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EXTENDED ABSTRACT

1 Introduction

Digitalized industrial processes require enhanced data collection techniques for process control and optimization. Kalman filters
have been extensively proposed in literature to produce virtual measurements for a multibody system [1] such as input forces [2].
Kalman filters in general are based on a dynamic model of the system, which is commonly considered to be known including only
small modeling inaccuracies. However, in complex systems, such as robots, the model parameters may not be directly derived
from design information of the device but can only be obtained through system identification.

This study investigates a practical implementation of virtual force measurements of an open-chain robot. The study starts by
defining an identifiable set of unknown inertia and friction parameters. The system model is formed using a semi-recursive
multibody formulation [3] and is identified using linear regression approach [4], while the force estimator is build using discrete
extended Kalman filter [2]. The approach is verified with artificial measurements. The results show good agreement both in
parameter identification and in force estimation.
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Figure 1: Simplified process description of system identification and force estimation

2 System identification

This study utilizes the property of linearity of actuator torques with respect to a specific parameter set, named Standard param-
eters. To acquire an identification problem with a unique solution, a subset of linearly independent Base parameters, KB is
formed. Consequently, the parameter estimation can be written as a linear regression:
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where Q̄Σ
𝑎𝑐𝑡 and Q̄Σ

𝑓 𝑟𝑖𝑐
are actuation torques and friction torques, respectively, M̄Σ is the mass matrix in joint space, Q̄Σ is

a composite external force vector through gravity, Coriolis and centripetal forces and unknown external forces. The friction
is modelled by Coulomb and viscous friction where the sign function is replaced by an hyperbolic tangent. This produces a
friction model that is both continuously differentiable, a requirement for extended Kalman filter, but is also linear with respect
to identified friction coefficients. In Eq. (1), Φ(z, ¤z, ¥z) is a regression matrix of a single observation being a function of joint
positions z, velocities ¤z and accelerations ¥z.

3 Force estimator

The force estimator is being build using discrete extended Kalman filtering, where the unknown forces f are considered as
additional states with random walk behavior. The continuous time stochastic model of the system can be constituted as:
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 +w ≡ F (X) +w, (2)

where w is Gaussian zero mean white noise. The continuous time model is discretized using exponential integration resulting in
a discrete time system model that can be directly applied to discrete extended Kalman filter framework.



4 Results and conclusion

Parameter identification and force estimation framework was tested with a numerical example based on Stäubli TX40 robot, of
which inertia parameters can be found from the literature [5]. However, the coupling between last two joints, characteristic for
this robot, was neglected for simplicity. Figure 2a presents the system identification results with artificially created measurements.
Actuation torques and positions were considered as measurements and both were augmented with noise. In the figure, x-axis
represents a minimum set of inertia parameters, given that the other inertia parameters are assumed to be zeros. In the figure,
𝐼 refers to a component of body inertia tensor, 𝐽𝑎 is an actuator inertia, 𝑚𝑋 , 𝑚𝑌 and 𝑚𝑍 refer to first moments of mass with
respect to a joint, 𝜎 is a viscous friction coefficient, and 𝐹𝑐 is a Coulomb friction coefficient. It should be noted that the physical
inconsistency of some of the inertia parameters in the figure (e.g. negative moments of inertia) is because of grouping effects
of total set of standard parameters being reduced to a set of base parameters. Correspondingly, Fig. 2b shows the comparison
between the applied external force and the estimated force.
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Figure 2: System identification and force estimation results

*Key for Fig. 2a x-axis: 1:𝐼1𝑧𝑧 , 2:𝐼2𝑥𝑥 , 3:𝐼2𝑧𝑧 , 4:𝐼2𝑥𝑦 , 5:𝐼2𝑧𝑥 , 6:𝐼2𝑦𝑧 , 7:𝑚2𝑋2, 8:𝑚2𝑌2, 9:𝐼3𝑥𝑥 , 10:𝐼3𝑧𝑧 , 11:𝐼3𝑥𝑦 , 12:𝐼3𝑧𝑥 , 13:𝐼3𝑦𝑧 ,
14:𝑚3𝑋3, 15:𝑚3𝑌3, 16:𝐽𝑎3, 17:𝐼4𝑥𝑥 , 18:𝐼4𝑧𝑧 , 19:𝐼4𝑥𝑦 , 20:𝐼4𝑧𝑥 , 21:𝐼4𝑦𝑧 , 22:𝑚4𝑋4, 23:𝑚4𝑌4, 24:𝐽𝑎4, 25:𝐼5𝑥𝑥 , 26:𝐼5𝑧𝑧 , 27:𝐼5𝑥𝑦 ,
28:𝐼5𝑧𝑥 , 29:𝐼5𝑦𝑧 , 30:𝑚5𝑋5, 31:𝑚5𝑌5, 32:𝐽𝑎5, 33:𝐼6𝑥𝑥 , 34:𝐼6𝑧𝑧 , 35:𝐼6𝑥𝑦 , 36:𝐼6𝑧𝑥 , 37:𝐼6𝑦𝑧 , 38:𝑚6𝑋6, 39:𝑚6𝑌6, 40:𝐽𝑎6, 41:𝜎1, 42:𝐹𝑐1,
43:𝜎2, 44:𝐹𝑐2, 45:𝜎3, 46:𝐹𝑐3, 47:𝜎4, 48:𝐹𝑐4, 49:𝜎5, 50:𝐹𝑐5, 51:𝜎6, 52:𝐹𝑐6.
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