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EXTENDED ABSTRACT

1 Introduction

This contribution considers physical validation for both industrial and research simulation tools. Romero et. al [1] recently
proposed a framework consisting of four benchmark tests for physical validation of simulation tools for slender elastic structures
in computer graphics. We apply the rod and shell models implemented in the simulation tool IPS (Industrial Paths Solutions)
[2, 3], the CRod model [4], and ODIN [5] to three of the benchmark tests illustrated by exemplary equilibrium states in Fig. 1.
These models are particularly designed for efficient (in the case of IPS real-time) simulations and thus share the motivational
aspects prevailing in computer graphics.

We show that for sufficient precision in meshes and load steps all simulations meet the expected results based on the master
curves from [1] – in particular for the parameter ranges which are relevant to the application field. In this course, we study the
numerical behavior of the models behind the software employed and the benchmarks.

2 Cantilever Bending

The first benchmark is valid for testing both shell and rod models, meaning structures that are thin in one or two directions,
respectively. The object of interest is clamped at one end (for the shell such that the direction of gravity points in the thickness
dimension) and free on the other end. When then exposed to gravity, the object bends downwards as displayed for the rod in
Fig. 1a. In this way, the total coordinate ratio ∆y

∆x measured between the end points may be plotted against the dimensionless
gravito-bending parameter

Γrod =
ρA◦gL3

EI
Γshell =

ρA�gL3

Dw
for geometrical parameters length L, shell width w, cross-section areas A, and second moment of area I, and mechanical parame-
ters density ρ , Young’s modulus E, flexural rigidity D, and gravity g.

Figure 2 displays the semi-analytic master curve and the simulation results for the IPS beam and shell on a logarithmic scale.
For rather coarse discretizations (e.g. 15 elements in the length dimension for the shell) and high values Γ > 5e3 the simulations
deviate from the master curve, but compute the physically correct solutions for lower values or finer discretizations. Notably, the
range of meaningful magnitudes of Γ for simulation of circular and flat cables is [100,102] and [100,103], respectively.

3 Bend-Twist Bifurcation

For rods the coupling of bending and twist gives rise to several phenomena which are demanding to capture by simulations. We
clamp a naturally circular rod vertically at one end, such that the initial tangent points in the direction of gravity. Depending on

(a) Cantilever bending (rod) (b) Bend-twist bifurcation (c) Lateral buckling

Figure 1: Exemplary equilibrium configurations for the three benchmark examples.



Figure 2: Overview of Cantilever
benchmark computed for the IPS
cable segment (rod) and the IPS
flat cable (shell). The green and
blue markers are aligned accu-
rately along the orange master
curve for the relevant intervals.

Figure 3: Integrated Frenet torsion
of the equilibria in the Bend-Twist
benchmark in IPS for a coarse
discretisation. Two-dimensional
configurations are characterized by
this integral being zero (dark blue
region). Ground truth determined
by the master curve displayed as
red wall.

Figure 4: Overview of Lateral
Buckling benchmark in IPS for a
shell with 20 elements in length di-
mension. Ground truth determined
by master curve displayed in the
background, simulations shown
as diamonds. Three-dimensional
configurations in green and stable
two-dimensional states in orange.

both the relationship between length L and bending radius R, and the gravito-bending parameter Γ either the naturally planar state
is a stable equilibrium or a buckling to a three-dimensional state such as in Fig. 1b occurs.

We observe a numerically very challenging behavior of the Bend-Twist benchmark. First, the circular reference configuration
requires a relatively fine discretization. Second, IPS does not feature perturbing the reference in terms of curvatures as described
in [1] such that we decide for rotating the direction of gravity slightly forwards and backwards again. Third, distinction between
plane and spacial case involves discrete approximation of the Frenet torsion (which is identically zero for plane curves), numerical
integration and choice of a threshold. Figure 3 displays the integrated absolute torsion in a height map for different test samples
varying in bending radius and gravity which quantitatively well fits together with the master curve.

4 Lateral Buckling

When clamping a ribbon such that its width dimension equals the direction of gravity, the gravito-bending parameter Γ and the
aspect ration of width to length w

L decide whether the planar state is a stable equilibrium or a lateral buckling occurs at the
slightest perturbation as depicted in Fig. 1c.

Figure 4 shows that the shell model in IPS can compute the bifurcation point quantitatively well even for rather coarse discretiza-
tions (e.g. 20 elements in length dimension), as long as w < L. Computations show, that for fine discretizations (e.g. 45 elements
in length dimension) the master curve is captured accurately. Naturally, distinct choices of geometry and material parameters
lead to different conditioning in the numerics and thus to significant variations of the shell behavior.
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