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EXTENDED ABSTRACT

1 Introduction

In optimization-based task-space control, the inverse dynamics of the robot is often incorporated to ensure that the commanded
behavior is physically feasible. For the inverse dynamics, the Equations of Motion (EoM) of the robot have to be solved in every
iteration of the optimization, which slows down the optimization considerably. To avoid this, a decoupled form of the solution of
the EoM can be evaluated for each time step, leaving an equation that shows a linear relation between the system inputs and its
accelerations. For MBS with many degrees of freedom, efficient methods to solve the EoM become increasingly more important,
which leads to various existing O(n) methods, such as the Articulated-Body Algorithm by Featherstone [1] or a similar O(n)
method by Bremer [2], which is used in this work. Since the standard form of these methods is unable to produce mentioned
decoupling of the acceleration terms, the linear map between the desired system inputs and the accelerations, called the inertia-
weighted input matrix (IWIM) here, has to be derived separately. Previous work on this was done in [3], where a recursive
formulation of the inverse operational-space inertia matrix was shown. For this, the contact forces were treated separately from
motor torques, since this way, the properties of an inertia matrix can be retained. This paper presents an algorithm which enables
the evaluation calculation of the IWIM using intermediate results obtained from an O(n) method.

2 Task Control Optimization Problem

The optimization problem for task space control as shown in [4] is written as

min
q̈,u

1
2

∥∥Jt q̈+ J̇t q̇− V̇t,c
∥∥2

s.t. M(q)q̈+h(q, q̇) = B(q)u
(1)

with the task Jacobian Jt giving the relationship between the task twist Vt and the minimal velocities q̇, Vt = Jt q̇. The commanded
time derivative of the task twist V̇t,c contains all the necessary information about the desired task trajectory. To ensure that the
resulting output is physically feasible, the EoM are considered in the constraints. As mentioned before, this problem formulation
is computationally very expensive. A more efficient approach is to compute q̈ = −M−1h+M−1Bu before solving (1). That
way, the system accelerations q̈ can be split up into two components, the free acceleration q̈0 = −M−1h that only depends on
the current system state and the accelerations caused by the system inputs q̈u, which depend linearly on the system inputs as
q̈u = M−1Bu through the IWIM, which is B̂ = M−1B. For the derivative of the task twist, this means

V̇t = Jt q̈+ J̇t q̇ = Jt(q̈u + q̈0)+ J̇t q̇ = Jt B̂u+Jt q̈0 + J̇t q̇ (2)

The IWIM is the map from the inputs to the system accelerations, which is a closely related to the cross-coupling inverse
operational-space inertia matrices from [4]. Due to this separation, the nonlinear constraint that is the EoM can be directly
incorporated into the cost function

min
u

1
2

∥∥Jt B̂u+Jt q̈0 + J̇t q̇− V̇t,c
∥∥2

(3)

which speeds up the optimization considerably, as the result is an unconstrained quadratic problem and the set of optimization
variables is smaller.

3 Solving the Equations of Motion

To efficiently handle the EoM of more complex systems, recursive dynamics algorithms have been proven to be the method of
choice, since there are some who have a computational complexity of O(n). One of them is the O(n) method presented in [2],
which is closely related to the Articulated-Body Algorithm (ABA) described in [1]. The idea of this algorithm is to split the
system up into a set of subsystems

∑
i

(
∂ ẏi

∂ q̇

)⊤
(Miÿi +hi(ẏi,q,ui)) = 0 (4)



and then solve the dynamics recursively on the subsystem level, thus avoiding large matrix dimensions.

Here, ẏi respectively ÿi are a characteristic set of velocities/accelerations for subsystem i, while Mi and hi are the corresponding
mass matrix and dynamics vector. The velocities ẏi can be calculated recursively as ẏi = Tipẏp+Fiq̇i with the index p indicating
the parent subsystem of i, the velocity propagation matrix Tip from p to i and Fi the matrix that incorporates the free motion of
the subsystem i into ẏi. This leads to a global relationship between the set of all velocities ẏi and the minimal system velocities
F = ∂ ẏ

∂ q̇ , which is a lower triangular block matrix. This property of F will be exploited later on in the new method.

The O(n) method consists of three recursions. In the first one, the kinematics is evaluated from the base subsystem outwards.
Then, in the following inward recursion, the articulated-body inertia M∗

i and bias forces h∗
i , as they are named in the ABA, are

computed as

M∗
p = Mp + ∑

i∈{s j(p)}
T∗⊤

ip M∗
i Tip h∗

p = hp + ∑
i∈{s j(p)}

T∗⊤
ip

(
M∗

i Ṫipẏp +h∗
i
)
, (5)

with T∗
ip = (I−M∗

i FiM−1
Ri F⊤

i )
⊤Tip and MRi = F⊤

i M∗
i Fi. The set {s j(p)} denotes all subsystems that have p as its parent. Finally,

the system accelerations are obtained through the final outwards recursion

q̈i =−M−1
Ri F⊤

i
[
M∗

i (Tipÿp + Ṫipẏp)+h∗
i
]

with ÿi = Tipÿp + Ṫipẏp +Fiq̈i + Ḟiq̇i. (6)

The problem here is that this method gives just the resulting accelerations without the possibility of splitting it up the way it was
done in (2). In order to do that, a new formulation was developed.

4 New formulation

It is assumed that the subsystem dynamics vectors hi can be split up into hi = hi,0 −Biui. Looking at the propagation formula
for the bias forces in (5), a global form h∗

u =−B∗u can then be derived.

A similar separation can be done with the system accelerations. When looking at ÿi =
∂ ẏi
∂ q̇ q̈+ d

d t

(
∂ ẏi
∂ q̇

)
q̇ and inserting q̈= q̈0+ q̈u,

one gets ÿi = ÿi,0 +
(

∂ ẏi
∂ q̇

)
q̈u, which can be used to rewrite (6) to

q̈i = q̈i,0 −M−1
Ri F⊤

i

[
M∗

i Tip

(
∂ ẏp

∂ q̇

)
q̈u +h∗

i,u

]
. (7)

Extending the resulting formula for q̈i,u to all system accelerations, the result can be simplified to

q̈u =
[
diag(M−1

Ri F⊤
i M∗

i )F
]−1

diag(M−1
Ri F⊤

i )B
∗u = ΓΓΓ

−1diag(M−1
Ri F⊤

i )B
∗u (8)

The matrix ΓΓΓ inherits its structure from F, i.e. it is a lower triangular block matrix. Moreover, thanks to M−1
Ri F⊤

i M∗
i Fi = I, all

the block matrices on the diagonal are identity matrices, leading to a real lower triangular structure with only ones as its diagonal
entries. This guarantees that this matrix will always be invertible.

This leaves the final result Jt q̈ = Jt q̈0 +Jt B̂u with q̈0 obtained by running the O(n) method without any inputs. Through that, all
variables that are needed to calculate the global matrices F,B∗ and subsequently ΓΓΓ and B̂ are computed in advance. Finally, B̂ is
computed as

B̂ =
[
diag(M−1

Ri F⊤
i M∗

i )F
]−1

diag(M−1
Ri F⊤

i )B
∗. (9)

A derivation of the full formulation and comparisons of the computation time will be presented in the full paper. This includes a
method how ΓΓΓ

−1 can be obtained without taking an explicit matrix inverse.
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