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EXTENDED ABSTRACT

1 Introduction

Nowadays, the simulation of flexible cables and hoses is an important aspect in early development phases, especially in vehicle
engineering. Due to the slenderness of cables and hoses, geometrically exact rod models as presented in [1] are suitable to achieve
fast and accurate simulations, even for dynamic simulations (see [2]). Besides cables and hoses, also many of their mounting
elements show significant flexibility. For realistic simulation results, this flexibility must be taken into account. To this end, we
combine our flexible rod model with flexible clip models. Typically, for acceptable simulation performance, those clip models
are derived from FE models by common reduction techniques (e.g. substructuring [3]).

2 Methodology

We consider a Cosserat rod with a staggered grid discretization, where translatory degrees of freedom live in the nodes and
rotatory degrees of freedom live on the edges. Thus a rod consisting of Ns segments is defined by Ns + 1 nodes xn ∈ R3,n ∈
{0, . . . ,Ns} and Ns edge quaternions pν ∈H∼=R4,ν ∈ { 1

2 , . . . ,Ns− 1
2}. For clamped rod ends, we additionally introduce boundary

quaternions p0 resp. pNs , such that, in total, we end up with N = 3(Ns + 1) + 4(Ns + 2) degrees of freedom. The state of
the rod is given by q = (p0,x0,p1/2,x1, . . . ,pNs−1/2,xNs ,pNs) ∈ RN . In order to describe rotations, quaternions pI with I ∈
{0, 1

2 , . . . ,Ns − 1
2 ,Ns} must be unit quaternions pI ∈ S3 := {p ∈ R4∥∥p∥ = 1}. Therefore we get M = Ns + 2 constraints, each

given by gI(q) = 1
2 (pI · pI − 1). The potential energy of the discrete Cosserat rod is given by the nonlinear scalar function

E : RN −→R,q 7−→ E(q), which consists of the bending, torsion, tension, shear and gravitational energy (see [1, 2] for details).

The flexible clip is assumed to have interface nodes u∈RL, given in local clip coordinates. We assume that there exists a potential
P : RL −→R,u 7−→ P(u), which describes the potential energy of the clip as a function of these interface nodes u. Additionally
we assume that there exists a function ψ : RL −→RL,u 7−→ Y mapping the local interface nodes to world coordinates. To relate
the clip’s interface nodes to the discrete rod, we introduce the function ϕ : RL×RN −→RL,(Y,q) 7−→ X, which maps the global
interface nodes Y ∈ RL to local coordinates X ∈ RL. It has to be noted that this mapping also depends on the configuration
q ∈ RN of the discrete rod. Additionally we introduce the function φ : RL ×RN −→ RL,(X,q) 7−→ Y which is the inverse of ϕ

with respect to the first variable and, therefore, for all q ∈ RN and Y ∈ RL it holds Y = φ (ϕ (Y,q) ,q). In Figure 1 the different
mappings are visualized.
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Figure 1: Diagram illustrating the mappings between cable, world and clip coordinates.

We relate the clip and the rod in an arbitrary but fixed initial configuration u0 and q0 and compute the corresponding local
coordinates X0 := ϕ(ψ(u0),q0) which subsequently are kept constant. This leads to the nonlinear optimization problem for rod
state q and the local clip interface nodes u given by

min
q∈RN u∈RL

E(q)+P(u) (1)

s.t g(q) = 0 (2)
φ(X0,q)−Ψ(u) = 0 (3)

By applying Ψ−1 to (3) we get u = Ψ−1(φ(X0,q)) and, thus, can explicitly write u in terms of q. Inserting this in the potential
energy of the clip, we arrive at P̃(q) := P(Ψ−1(φ(X0,q))). Hence the optimization problem only depends on the variable q.



3 Flexible Clips for Cables

As application case we consider flexible clips for cables and hoses. The clip model is given as reduced substructure model,
generated by static condensation, only retaining the relevant interface nodes. Let u= (uT

1 , . . . ,u
T
LC
)T be the local displacements of

the interface nodes, i.e. the degrees of freedom of the clip, and let K by the stiffness matrix of the clip. Hence the potential energy
of the clip is given by P(u) = 1

2 uTKu. Further, let z = (zT
1 , . . . ,z

T
LC
)T be the local position of the interface nodes. Together with

the global clip position yC and rotation RC, the transformation to world coordinates is given by ΨI(uI) = yC +RC (zI +uI) = YI ,
for I ∈ 1, . . . ,LC.
Now, also for the cable we need to define the transformation from world to local coordinates and vice versa. In the case of rod
models it seems obvious to use cylinder-type coordinates, such that for each YI ∈ R3 we define XI = (sI ,dI ,αI)

T = ϕ(YI ,q),
where sI is the corresponding arc length, dI is the distance to the centreline and αI is the angular position in the local cable cross
section (specified by the edge quaternion). The back transformation from local to world coordinates YI = φI(XI ,q) is defined
correspondingly.

Figure 2 shows an example of a simple clip geometry. On the left one can see the full FE model of the clip and the definition of
the interface nodes (in red), which will be retained also for the reduced model. On the right one can see a flexible cable, which is
mounted at the reduced clip model.

Figure 2: Left: FE-model of the clip with red interface nodes. Right: Flexible cable model mounted to the reduced clip model.

4 Conclusion and outlook

The above stated methodology, which utilizes known techniques to couple flexible components into multibody systems [4, 5],
provides a versatile and general approach to couple our flexible cable model with additional flexible components. This generality
is important, since mounting elements like clips for cables and hoses show various geometries and, especially, have very different
support ranges (i.e. surface area in contact with the flexible rod). While the above optimization problem only solves static (or
quasi-static) problems, we also plan to extend the methodology to dynamic problems.
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