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EXTENDED ABSTRACT

1 Introduction

Computational efficiency is crucial for the multibody system dynamics analysis [1], especially in the case of sophisticated systems
such as human body parts. The absolute nodal coordinate formulation (ANCF) is a nonlinear finite element approach proposed for
the large deformation dynamics analysis [2], which has shown its effectiveness [3]. The study aims to present the Achilles tendon
as a beam-like structure described within this formulation. The beams are in a framework of the ANCF using the three-nodded
higher-order continuum-based ANCF beam element denoted as 3363 in [1]. Such as tendons consisting of three sub-tendons
with arbitrary cross sections, Green’s integral formula for continuum-based ANCF beam elements is applied [4] to capture their
cross-section forms. The contact is described by the method presented in [5]. Then, the human Achilles tendon, as one example,
is considered as a multi-beam structure [6]. The example additionally demonstrates the potential of the cross-section description
because the previous FE-based models of the tendon require a fine element mesh [7].

2 Numerical integration scheme via Green’s integral formula

Here, the integration procedure introduced in [4] and applied in [6] is shortly revised. Let us consider a closed domain Ω,
which has a piece-wise border ∂Ω with points Vi on it. Besides, the lines [Vi,Vi+1] have several additional points, such Pi1 =
Vi,Pi2, ...,Pimi =Vi+1. a parametrization is recalled:
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Then each line [Vi,Vi+1] is tracked by a spline curve Si(t) = (Si1(t),Si2(t)) the degree of pi, where pi ≤ mi − 1. The cubature
formula with the 2n−1 polynomial exactness degree over Ω domain then has the form as follows.
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where
Λ2n−1 = {λ = (i, j,k,h) : 1 ⩽ i ⩽ ϕ,1 ⩽ j ⩽ mi −1, 1 ⩽ k ⩽ ni,1 ⩽ h ⩽ n}, (3)
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, ∆ti j = ti j+1 − ti j, (5)

ni =

{
npi + pi/2, pi is even,
npi +(pi +1)/2, pi is odd.

(6)

Thus, only τ
ni
k , ω

ni
k and Ξ are to be defined. Ξ is an arbitrary straight line. τ

ni
k , ω

ni
k are the nodes and weights, respectively, of

the Gauss–Legendre quadrature formula of the exactness degree 2ni −1 on [−1,1]. The presented approach is used to obtain the
cross section of the sub-tendons shown in Fig 1a-1c.

3 Contact Formulation

The using surface-to-surface contact formulation presented in [5] is recalled to combine tree sub-tendons given as flexible de-
formable beams with arbitrary cross sections. The following body can be formed (see Fig. 2).
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(c) Lateral gastrocnemius

Figure 1: Integration approximations of the sub-tendons by the Gauss–Green cubature formula.

Figure 2: Tendon beam-based approximation.

4 Conclusion

This work considers the beam-like structures with non-standard cross-sections for the human Achilles tendon description. The
convergence of the system based on the ANCF element was checked with varying different meshes [6].
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