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EXTENDED ABSTRACT

1 Introduction

The use of Neural Networks (NN) for identifying and predicting nonlinear vibration behaviour is an exciting field of research,
given in a vast number of physical and engineering applications. In particular, several pure Deep Learning (DL) based architec-
tures have been proposed for time series prediction due to the rapid progress in NN research [1, 2, 8]. Once trained, this NN
approach enables low-resource, real-time predictions of system responses. Unfortunately, studies towards the practical applica-
tion of technical systems are scarce. Here, data-driven approaches aim at minimizing the testing time and cost by identifying
the system behaviour based on a small number of measurements to predict future ones. While NN architectures perform well
for many applications, they often lack generalization capability for unseen input data and longer prediction lengths, due to error
accumulation over time.

Furthermore, they may become problematic when depicting the dynamic oscillating behaviour in forced nonlinear systems [3,
4, 5]. Therefore, we explore a hybrid modelling approach to approximate the nonlinear transfer behaviour between the external
excitation and the system response. The main building blocks are the linear transfer function in frequency domain to include
the linearized oscillating behaviour of our system into the architecture and an Autoregressive Neural Network (hybrid-ARNN)
to account for nonlinear influences. As Network architectures, we compare simple ARNN and utilize modern Long-Short-Term
Memory Networks(LSTM) and Gated Recurrent Units(GRU). While ARNN are very similar to state space models, LSTM and
GRU provide an internal memory to approximate the system state [6, 7]. Therefore, first we approximate the linear transfer
function to the given data in a two-step process. Afterwards, the neural network is trained with the nonlinear system response
data using the linear solution and the external excitation as input in an autoregressive setting:

$(t) =yi(t) + fo (X (), 3° (1), §° (1 = 1)), (1)

where y(7) describes the predicted system state at timestep # while yj(#) the corresponding linear solution. The external excitation
is defined as x*(r) where s indicates a sequence (last s time steps). The previous linear and nonlinear system states are defined as
vi*(t) and ¥°(r). Lastly, f(-) defines the mapping by the NN with architecture-specific parameters ¢. We compare ARNN, which
is easier to handle and can contain basic properties such as symmetry, to LSTM and GRU, which have internal memory to save
information over time [9]. Figure 1 shows exeplarically our hybrid ARNN architecture.
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Figure 1: Hybrid-ARNN architecture to predict forced vibrations

All models are trained using adaptive gradient decent techniques in either closed-loop or open-loop environments. We perform a
sequential probabilistic optimization to find ideal hyperparameter combinations for training and interference.



2 Results and Discussion

We investigate oscillations of the DUFFING equation &+ 2D +x + ax’ = f () and an automotive use case based on measurement
data. DUFFING system data is synthesized with generic external excitations f(z) (white noise, sweep signals, sine functions)
using a DORMAND-PRINCE integration method. The automotive use case extends this one-dimensional theoretical case towards
a multidimensional excitation and response for real-world training and validation data from testing tracks. We investigate multiple
regularization techniques and show a clear dependency in accuracy due to specific hyperparameters. Our examples emphasize that
the proposed hybrid-ARNN achieves significantly higher prediction accuracy than classical linear methods and converges faster
than pure ARNN during training. Furthermore, ARNNS train more quickly and achieve superior accuracy in time and frequency
domain. At the same time, LSTM and GRU suffer from a recency bias in training and cannot extrapolate to different excitation
signals, especially on long excitation signals. Some preliminary results are shown in Figure 2, showing a clear advantage of our
models compared to classic linear approaches.
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Figure 2: Time series results of the considered linear models (right) compared to the proposed nonlinear ARNN model (left) [6]

Furthermore, we show that a unique penalty formulation applied to the weights significantly reduces the training parameters’
sensitivity. Our novel workflow defines a suitable approach for predicting forced vibrations in academic examples and for a
real-world case based on multidimensional measurement data.
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