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EXTENDED ABSTRACT

1 Introduction

Mobile manipulators have potential for practical applications, such as in logistics operations, but require the ability to handle
objects too large for their arm(s). This can be achieved through endowing the robot with the capability to push objects to a
desired location. Previous studies have attempted pushing manipulation using the robot arm, but this approach is limited by the
arm’s payload capacity. Our paper focuses on using the more capable mobile base for pushing instead. We consider a goal-
conditioned pushing planning problem using a cylinder-shaped differential-drive robot to push a polygonal object, as depicted in
Figure. 1c, 1d. There are two key challenges in previous pushing planning studies: 1) the discontinuity of the contact dynamics,
which hinders planning and control, and 2) the commonly used planar pushing model that disregards the shape of the robot and
ignores the relative motion between the robot and pushed object [1, 2]. Our objective is to develop a continuous dynamics model
for mobile pushing and demonstrate its use in pushing control.
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Figure 1: (a) and (b) show the model of the robot-object system under pushing. (c) and (d) present the pushing control result
based on the proposed robot-object model with a Tiago robot.

2 Dynamics Model for Robot Pushing

Friction-less Continuous Robot-Object Contact. The physical interaction between the robot and the object during the pushing
process can be modeled as a 2D constrained multibody dynamics problem, as depicted in Figure. 1a and 1b. Instead of catego-
rizing the robot-object contact modes into discrete states as in previous studies [1, 2], we assume frictionless contact between
the robot and the pushed object. For simplification, a contact constraint is imposed to maintain continuous contact and prevent
transition to the separation mode. The robot is also constrained to prevent backward motion and deceleration that exceeds the
object’s deceleration from floor friction. The contact constraint is summarized as:

Rvr > 0, −90◦ < φ < 90◦, and |accr|< accr, max. (1)

where Rvr is the linear velocity of the robot 1, φ denotes the angle between the object and the robot frame as shown in Fig. 1a,
accr is the acceleration of the robot, accr, max is the maximum acceleration of the robot.

Continuous friction model for object-ground contact. A continuous (i.e., non-Coulomb) friction model is used to mathemat-
ically approximate the Coulomb’s law of friction such that the contact dynamics can be modeled in a continuous fashion. We
assume the friction interaction between the object and the ground at the contact surface with a constant coefficient of friction, µg.
The friction force at position W p is expressed as

fg,p =−µg · (2sig(vp)−1) · fn (2)
where fn is the normal force at W p, vp = [ẋo, ẏo]

T the velocity of W p expressed in the world frame, µg the friction coefficient, and
sig(·) = 1

1+exp(−(·)) the sigmoid function.

Multibody dynamics model for the pushing system. Since we assume (and control) that the contact between the robot and the
object is carefully maintained, the robot-object system is modeled as two rigid bodies connected by an idealized sliding joint. The

1The superscript R denotes the Robot frame. The Object and the World frame are respectively represented as O and W . W is always omitted for simplicity.



mobile robot is assumed to be controlled in a closed loop to achieve the desired movement, so its motion will not be influenced
by the reaction force exerted by the object. For the pushed object, its motion is a result of the contact interaction with the robot.
The dynamics of the object can be achieved by a combination of the Newton-Euler equations of motion and a contact constraint
equation in the form of Differential Algebraic Equations. The Newton Euler equations of motion for the object are,

cos(θo)
O fx,p + fx,f = moẍo

sin(θo)
O fx,p + fy,f = moÿo

−Oyc
O fx,p + τf = Ioθ̈o

(3)

where xo = [xo,yo,θo]
T ∈ R3 denote the robot’s state vector, xo,yo are the position of the robot in the World frame, θo is its

orientation. O fx,p is the x-component of the push force in the Object frame. fx,f is the x-component of the friction force exerted
by the ground in the World frame. Oyc is the position of the contact point in y direction of the Object frame, mo and Io are the
mass and moment of inertia of the object.

Since the robot and the object always keep contact, the contact constraint can be expressed as Oxr = cos(θo)(xr−xo)+sin(θo)(yr−
yo)=−rr− 1

2Wo, where rr,Wo respectively denote the radius of the robot and the width of the object. By differentiating the contact
constraint twice with respect to time, we can achieve the constraint on the object accelerations:

C,x ∗ ẍr +g,x = 0 (4)
with g,x =−cos(θo)θ̇oθ̇o(xr−xo)+cos(θo)ẍr+sin(θo)ÿr−2sin(θo)θ̇o(ẋr− ẋo)−sin(θo)θ̇oθ̇o(yr−yo)+2cos(θo)θ̇o(ẏr− ẏo), and
matrix C,x = [−cos(θo),−sin(θo),−sin(θo)(xr − xo)+ cos(θo)(yr − yo)].

Combining the equations of motion Eq. 3 and the contact constraint equation Eq. 4 leads to a full set of DAEs:[
M CT

,x
C,x 0

][
ẍo

O fx,p

]
=

[
wg
g,x

]
(5)

where M = diag[mo,mo, Io], and wg = [ fx,g, fy,g,τg]
T is the wrench exerted by the ground.

3 Result and Conclusion

We assess the validity of the proposed pushing dynamics model through real-world experiments, utilizing a Tiago robot to push
a 1.5 kg box with dimensions of 0.565×0.755×0.425 m3 and ground-box friction coefficient of µg = 0.4. Control commands,
as well as pose and twist data for the robot and object, were collected for 2 minutes with a sampling time of δ t = 0.1 s. The
proposed contact dynamics models were then applied to predict the motion of the object, as depicted in Fig. 2.
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Figure 2: The measured and predicted trajectory of the robot and the object under pushing manipulation. The red and blue
trajectories respectively denote the measured robot and object trajectory from the motion capture system. The pink trajectory is

the predicted robot trajectory with the robot motion model. The yellow and green ones are respectively object trajectories
predicted by the DAE model (Eq. 5), and the pushing model with simplified friction calculation.

It is important to point out that the friction force exerted by the ground is calculated by integrating the force over the contact
patch. Accurate integration requires a long solution time which can not be achieved in real-time control. So we simplify the
integration by only summing for the force at the corners of the polygonal object. The trajectory predicted by the simplified model
is shown as the green trajectory in Figure. 2. With the simplified dynamics model of the pushing system, we formulate the
goal-conditioned pushing planning problem as an Optimal Control Problem. We apply the pushing controller to the Tiago robot
to push large and heavy objects, whose result is shown in Figure. 1c and 1d. Transparency of the robot and objects indicates their
movement. As we can see from the figures, the controller can successively achieve the pushing task by pushing the object to the
goal location while maintaining contact with the objects. A detailed description of the full algorithm as well as the results will be
presented in the full paper.
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