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EXTENDED ABSTRACT

1 Introduction

Multibody systems with small deviations from a nominal state may be described conveniently in linear spaces parametrizing
rotations, e.g., by Euler angles. On the other hand, nonlinear configuration spaces are the more natural choice for systems with
large rotations since they allow a parametrization of rotations without singularities.

Typical examples are the group SO(3)⊂ R3×3 of rotation matrices, its direct or semi-direct products with R3 and Cartesian
products

(
SO(3)×R3

)k and
(
SE(3)

)k with the special Euclidean group SE(3) := SO(3)nR3 . Isomorphic representations in
terms of (unit) quaternions may improve the computational efficiency. All these nonlinear configuration spaces are equipped with
a group operation “◦” that combines basically the sum of position vectors with the matrix multiplication in SO(3) . With this
group operation, the nonlinear configuration space is not just a (differentiable) manifold but a Lie group, denoted by G.

Joints restrict the relative motion of bodies. If they are modelled by (holonomic) constraints then possible configurations are lim-
ited to a submanifold of G. Mathematically, constraint equations and the Lie group structure of G result both in a (sub-)manifold
setting for the configuration space but they represent two completely different modelling aspects. Lie group DAE methods like
the generalized-α Lie group method [2] consider these different aspects combining Lie group time integration [4] with solution
techniques for constrained mechanical systems from the field of differential-algebraic equations (DAEs) in linear spaces [3].

The brute force approach to numerical methods on manifolds relies on local parametrizations. Munthe-Kaas proposed to update
these local parametrizations in each time step and to solve (an approximation of) the corresponding ordinary differential equation
(ODE) in terms of the local coordinates by one time step of a classical ODE method [4]. For typical configuration spaces in
multibody system dynamics, the local parametrizations and the ODEs for local coordinates may be evaluated in closed form by
Rodrigues like formulae for the exponential map exp, its (left) trivialized tangent dexp−w̃ and the inverse dexp−1

−w̃ , see [6].

2 Half-explicit Runge-Kutta methods in the local coordinates approach

Recently, there has been new interest in the local coordinates approach to Lie group time integration [5, 7]. The present paper
contributes a novel half-explicit Lie group integrator to this field of research. We consider equations of motion [2]

q̇ = DLq(e) · ṽ , M(q)v̇+g(q,v, t)+B>(q)λλλ = 0 , ΦΦΦ(q) = 0 (1)

with q ∈ G representing the configuration of the system and v ∈ Rn denoting the velocity vector. The most simple nontrivial
example of this Lie group setting is given by G = SO(3) with 3×3 rotation matrices q(t) = R(t) ∈ G , kinematic equations
Ṙ = Rω̃ωω , angular velocity ωωω = v ∈ R3 and ω̃ωω ∈ so(3) being defined by ω̃ωω w = ωωω×w , (w ∈ R3 ).

Equations of motion (1) with a symmetric, positive definite mass matrix M(q) form a Lie group DAE of index 3. The r holonomic
constraints ΦΦΦ(q) = 0 are coupled to the dynamical equations by constraint forces −B>(q)λλλ with Lagrange multipliers λλλ ∈ Rr

and a full-rank matrix B(q) ∈ Rr×n that represents the constraint gradients in the sense of DΦΦΦ(q) ·
(
DLq(e) · w̃

)
= B(q)w for

all w ∈ Rn . For time integration, we substitute in (1) the constraints ΦΦΦ(q) = 0 by their time derivative and get the analytically
equivalent index-2 formulation of the equations of motion with constraints at the level of velocity coordinates

0 =
d
dt

ΦΦΦ
(
q(t)

)
= DΦΦΦ

(
q(t)

)
· q̇(t) = DΦΦΦ

(
q(t)

)
·
(
DLq(t)(e) · ṽ(t)

)
= B

(
q(t)

)
v(t) . (2)

In a neighbourhood of t = tm , Lie group G is parametrized by elements θ̃θθ m of the corresponding Lie algebra with local coordinates
θθθ m ∈ Rn that are known as incremental rotation vector in the case of G = SO(3) . We get q(t) = q(tm)◦ exp

(
θ̃θθ m(t)

)
with θθθ m(t)

solving the locally defined initial value problem

θ̇θθ m(t) = T−1(
θθθ m(t)

)
v(t) , ( t ≥ tm ) , θθθ m(tm) = 0 (3)

that is written in matrix-vector form using the tangent operator T(w) ∈ Rn×n for representing the left trivialized tangent dexp−w̃ of
the exponential map [4]. The time step tm→ tm+1 = tm +h starts with numerical solutions qm ≈ q(tm) , vm ≈ v(tm) , λλλ m ≈ λλλ (tm)
that define stage values Qm1 = qm ◦ exp(Θ̃ΘΘm1) with ΘΘΘm1 := θθθ m(tm) = 0 and Vm1 = vm . The other stage values are given by

Qmi = qm ◦ exp(Θ̃ΘΘmi) , ΘΘΘmi = h
i−1

∑
j=1

ai j Θ̇ΘΘm j , Vmi = vm +h
i−1

∑
j=1

ai j V̇m j , ( i = 2, . . . , s̄+1) , (4a)



with
Θ̇ΘΘmi = T−1(ΘΘΘmi)Vmi , M(Qmi)V̇mi +g(Qmi,Vmi, tm + cih)+B>(Qmi)ΛΛΛmi = 0 , ( i = 1, . . . , s̄) , (4b)

suitable Runge-Kutta parameters ai j and nodes ci := ∑ j ai j . The first Runge-Kutta stage has to be explicit in terms of ΛΛΛm1 := λλλ m
to avoid order reduction and large local error terms [1]. In all other stages, we follow the approach of Brasey and Hairer [3] and
enforce the hidden constraints (2) for the stage values Qm,i+1,Vm,i+1 such that each pair of stage vectors (V̇mi,ΛΛΛmi) , ( i = 2, . . . , s̄ ),
is defined by a system of n+ r linear equations being composed of n dynamical equations in (4b) and r constraint equations:

0 = B(Qm,i+1)Vm,i+1 = B(Qm,i+1)
(
vm +h

i−1

∑
j=1

ai+1, j V̇m j +hai+1,i V̇mi
)
, ( i = 2, . . . , s̄) . (4c)

Finally, the numerical solution at t = tm+1 is defined by qm+1 = Qm,s+1 , vm+1 = Vm,s+1 for a suitable s≤ s̄ , i.e., by the explicit
update (4a) with i = s+1 and parameters as+1, j as Runge-Kutta weights that are often denoted by b j , ( j = 1, . . . ,s ). For the
Lagrange multipliers, the numerical solution is set to λλλ m+1 := ΛΛΛms̄ or, more general, to λλλ m+1 := ∑ j d jΛΛΛm j with scalar parame-
ters d j , ( j = 1, . . . , s̄ ), that have to satisfy a contractivity condition to guarantee zero-stability of the half-explicit method [1, 3].

3 Numerical test results

The local coordinates approach results in Lie group methods that achieve their classical order known from ODE/DAE theory [4].
There are half-explicit Runge-Kutta Lie group methods of order p = s for all p≤ 4. Most attractive might be the half-explicit
HEDOP5 integrator that is based on the explicit Runge-Kutta method of Dormand and Prince (known, e.g., as Matlab’s default
integrator ode45). HEDOP5 has s = 6, s̄ = 8 stages and converges with order p = 5 in all solution components [1, 3].

Fig. 1 shows numerical test results for three half-explicit Runge-Kutta Lie group methods being applied with fixed time step sizes
to the heavy top benchmark [2] that is formulated as a constrained system in SE(3). All three methods achieve the theoretically
predicted order of convergence with the 5th order method HEDOP5 being clearly superior to the two lower order methods.
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Figure 1: Global error of half-explicit Runge-Kutta Lie group methods for heavy top benchmark in SE(3).
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