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EXTENDED ABSTRACT

1 Introduction

The present work focuses on optimal control problems of mechanical systems subject to holonomic constraints. Here, the motion

of the system is governed by differential algebraic equations (DAEs) which are typically of index three but can be reduced to

index two easily, see e.g. [1, 2]. For some problems minimal coordinates can be found or the holonomic constraints can be

eliminated by applying a nullspace method, see e.g. [3]. However, for more involved multibody systems it can be cumbersome or

even impossible to find minimal coordinates. Therefore, the most general approach to the optimal control of multibody systems

relies on using redundant coordinates. Concerning optimal control problems with DAEs as state equations, there are various

approaches how to tackle the problem, see e.g. [4, 5, 6, 7]. In the present work we compare these alternative approaches. In this

connection, a new variational integrator is presented and eventually the different approaches are compared with regard to their

numerical results, gained by applying the proposed integrator.

2 The constraints of the optimal control problem
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Figure 1: Four linked masses

A simple but representative example of a multibody system, who’s min-

imal coordinates are cumbersome to find and who’s nullspace matrix is

cumbersome to compute is depicted in Figure 1. The four mass points mi,

(i = 1, . . . ,4) are assumed to be linked by four massless rigid bars. Let

dqi = qi+1 −qi (1)

describe the distance between the masses mi+1 and mi. Then four holo-

nomic constraints on position level of the form

g3(q) =
1

2
(dqT

i dqi − l2
0) = 0 (2)

can be used to enforce the constant distance l0 between the respective mass

points. If pi denotes the conjugate momentum given by pi = miq̇i, the con-

straints on velocity level are of the form

g2(q,p) = dqT
i

(

1

mi+1

pi+1 −
1

mi

pi

)

(3)

The position vectors qi and the momentum vectors pi are collected in asso-

ciated system vectors q and p, respectively.

Similarly, the constraint functions on position and velocity level are arranged in vector-valued functions g3(q) and g2(q,p),
respectively. The controlled equations of motion can now be written as

q̇ = ∂pHM
j (q,p,y)

ṗ = −∂qHM
j (q,p,y)+B(q)u

}

ẋ = f(x,y,u) (4a)

000 = ∂yHM
j (q,p,y) (4b)

with HM
j being the Hamiltonians

HM
3 (q,p,y) = T (q,p)+V(q)+ ŷT g3(q) (5)

HM
2 (q,p,y) = T (q,p)+V(q)+ ŷT g3(q)+ ȳT g2(q,p) (6)

respectively. Here, label j ∈ 2,3 indicates the differentiation index of the DAEs (4) resulting from choosing either HM
3 or HM

2 .

Note that the Lagrangian multipliers are collected in vector y. Those of them who are related to constraints g3(q) and g2(q,p)
are denoted by ŷ ∈R

4 and ȳ ∈R
4, respectively. Moreover, T and V denote the kinetic and potential energy. In (4), u contains the

control inputs and B denotes the control distribution matrix.



3 The Optimal Control Problem

Let the optimal control problem seek to minimize the cost functional

S (u,q) =

∫ t f

t0

C(u,q)dt (7)

subject to the constraints (4), which need to be satisfied during the time interval [t0, t f ]. We further introduce the second time

derivative of the constraints g3 and denote them by g1(x,y,u), where the state vector x contains both q and p. Similarly to

the equations of motion (4), the necessary optimality conditions of the optimal control problem can be written in terms of the

Hamiltonians

H3,1(·) = λλλ T
f(x, ŷ,u)+ηηηT

1 g1(x, ŷ,u)−C(u) (8)

H2,1(·) = λλλ T
f(x,y,u)+ηηηT

1 g1(x,y,u)+ηηηT
2 g2(x,y)−C(u) (9)

H3,3(·) = λλλ T
f(x, ŷ,u)+ηηηT

3 g3(x)−C(u) (10)

H2,2(·) = λλλ T
f(x,y,u)+ηηηT

2 g2(x)−C(u) (11)

In particular, employing one of the above Hamiltonians yields the corresponding necessary optimality conditions

ẋ = ∂λλλ H j,k(x,y,u,λλλ ,ηηη) (12a)

0 = g(x) (12b)

λ̇λλ =−∂xH j,k(x,y,u,λλλ ,ηηη) (12c)

0 = ∂yH j,k(x,y,u,λλλ ,ηηη) (12d)

0 = ∂uH j,k(x,y,u,λλλ ,ηηη) (12e)

which are comprised of the state DAEs (12a), (12b), the adjoint DAEs (12c), (12d) and the optimality conditions (12e). Note that

λλλ and ηηη contain the adjoint variables. Moreover, depending on the choice of Hamiltonian H j,k, alternative optimality conditions

are generated. The indices of H j,k indicate that the resulting state DAEs have index j, while the adjoint DAEs have index k.

4 Outline of the talk

In the talk, we shall investigate the alternative choices of the Hamiltonians H j,k in more detail and relate them to previous works.

In addition to that, we investigate numerical methods based on the alternative Hamiltonians and compare their results in the

context of representative examples dealing with mechanical systems subject to holonomic constraints.
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