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Derivatives of quaternion spline interpolation function for multibody dynamics
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EXTENDED ABSTRACT

Interpolation plays an important role in nowadays world. By interpolating data, we save time and money in general. The
main areas where interpolation is applied are robotics, automotive, medicine and biology. One of the possible basis splines for
interpolation are B-splines, which are also used in Computer Aided Geometric Design (CAGD) due to their smoothness and
locality properties [1]. In this work we consider problems of kinematics, which are, in many cases, characterized by a set of
non-liner algebraic equations that have to be assembled and solved in each time step. The computational procedure could be time
consuming and therefore it is reasonable to develop suitable methods to overcome such difficulties. Moreover, parametrization of
finite rotations is an essential issue in multi-body kinematics and dynamics and therefore the concept of quaternions is employed
to describe body rotations in this work. In other words, the main idea is to solve the kinematics prior to the dynamics and to
pre-compute the rotation parameters of a car wheel support and then use the interpolation of rotations in the framework of more
complex computational tasks. The pre-computation of the rotation parameters leads to a look-up table.

1 Spline, B-spline and quaternion spline interpolation

Generally, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called
a spline. Spline interpolation fits low-degree polynomials to small subsets of the values. Spline interpolation provides lower
interpolation error [3] and also avoids the problem of Runge’s phenomenon. B-spline is a spline function that has minimal
support with respect to a given degree, smoothness, and domain partition. Any spline function of given degree can be expressed
as a linear combination of B-splines of that degree [4]. The base functions Bk

i (u)’s are defined by the recurrence relation [5]

Bk
i (u) =

u−ui

ui+k−1 −ui
Bk−1

i (u)+
ui+k −u

ui+k −ui+1
Bk−1

i+1 (u), where B1
i (u) =

{
1 ui ≤ u ≤ ui+1,
0 otherwise. (1)

Spline of order k B̃k
i (u) belongs to Ck−2 class, so that we use k = 4 to reach continuity at the acceleration level. For the simplicity

of the text we assume B̃k
i (u)≡ B̃4

i (u)≡ B̃i(u)). The B-spline quaternion curve with a cumulative basis form is formulated as [5]
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which interpolates a given sequence of given unit quaternions Qi (i = 0, 1,...,n) in terms of driving parameter u. The control unit
quaternions (control points) qi have to be precomputed from the sequence of given unit quaternions [5].

2 Derivatives of quaternion B-spline interpolation

With the definition 2 we can define the first derivative as
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i(u))), where B̃′
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where B̃′
i(t) is given by the B-spline differentiation formula [2]. With the first derivative it is now very easy to develop second

derivative, by applying the chain rule we obtain
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3 Results

Vertical coordinate of the wheel support (body K) was chosen as the driving parameter (denoted by u resp. u̇ and ü for first
and second time derivative), so that the wheel support travels from u = -0.19 to 0.2 m. The look-up table consisted of 100 rows
and was generated so that the relative angle between two successive rotations in the table was constant θ = 0.003 rad. The



driving parameter u was imposed to compute the body configuration qK(u) = [xK yK zK φK θK ψK ], and q′
K(u) =

∂qK(u)
∂u and

q′′
K(u) =

∂ 2qK(u)
∂u2 . We analysed and compared (with exact values from kinematic solver) two quantities, vector δδδ K(u) and vector

∂δδδ K(u)
∂u representing the error of angular velocity and acceleration, respectively. Vector δδδ K(u) is defined with the help of the

angular velocity of body K ωωωK(u), so that vectors δδδ K(u) and ∂δδδ K(u)
∂u are defined as

ωωωK =
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The exact orientation (of the body K) will be compared to the interpolated one (Kint ). We compare the evolution of the norm of
the vector difference between the δδδ vectors, and the norm of the vector difference between the ∂δδδ K

∂u vectors, whereas

δE(u) =
||δδδ K(u)−δδδ Kint(u)||

||δδδ u
K(u)||

, and dδ E(u) =
|| ∂δδδ K

∂u (u)− ∂δδδ Kint
∂u (u)||

|| ∂δδδ K
∂u (u)||

. (6)
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Figure 1: δE(u) error and dδE(u) error

4 Conclusion

The performed interpolation shows that dδE(u) shows higher error than δE(u) which is logical result, because computation of
δδδ K(u) is based on more points. The errors are lower than 0.3%, which is sufficient for the dynamical simulations. The highest
errors are achieved in the beginning and the end of the interpolated interval, this is caused by bad boundary conditions and by the
inner properties of the method. One of the biggest advantage of this interpolation is that it is based on the orientations, not on
angular velocities or accelerations as it is in case of Hermite spline interpolation.
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