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EXTENDED ABSTRACT

1 Introduction

Gradient determination is an important step in the analysis and optimization of rigid and flexible multibody systems. If the num-
ber of design variables is high, the adjoint variable method is often the most efficient approach to sensitivity analysis. However, a
set of adjoint differential equations have to be derived and solved first, whose structure depends on the structure of the multibody
system equations. In general, the system equations can be formulated in implicit differential-algebraic form as

x ∈ Rh design variables
zI(t,x),zII(t,x) ∈ Rr redundant position and velocity variables

λλλ (t,x) ∈ Rnc Lagrange multipliers

φφφ
0(t0,z0

I ,x) = 0 initial conditions (position level)

φ̇φφ
0
(t0,z0

I ,z
0
II,x) = 000 initial conditions (velocity level)

żI −Z(zI)zII = 000 kinematic relation

M(zI,x)ż− f(t,zI,zII,x)−CT(zI,x)λλλ = 000 kinetic equations
c(t,zI,x) = 000 constraint equations (position level)

(1)

whereby Z is the kinematic matrix, M the global mass matrix, f comprises the generalized inertia forces, elastic forces, and the
applied loads, and C is the Jacobian matrix of the constraint equations c. Since the numerical solution of this index-3 system is
demanding, the index is often reduced by differentiating the kinematic constraints twice

ċ(t,zI,zII,x) =
∂c
∂zI

Z︸ ︷︷ ︸
C

zII +
∂c
∂ t︸︷︷︸
ct

= 000, c̈(t,zI,zII,x) = CżII + ĊzII +
∂ 2c
∂ t2︸ ︷︷ ︸

ctt

= 000, (2)

and considering the constraints at acceleration level in the time integration.

2 Projection of System Equations

Alternatively to the index reduction, the system equations (1) can be transformed into a set of f ordinary differential equations
(ODEs) by, for instance, a projection as in [3] before deriving the adjoint sensitivity equations. While the projectors in [3] are
determined from a manual coordinate partitioning, in this work, a full QR decomposition [2] is used. From the Jacobian of the
constraints C, two orthogonal matrices can be determined as

CT = QR =
[
Q1 Q2

][R1
000

]
, Q1 ∈ Rr×nc ,Q2 ∈ Rr× f ,R1 ∈ Rnc×nc , (3)

which represent the constrained and free motion directions Q1 and Q2 of the multibody system. Accordingly, the redundant
velocity and acceleration coordinates can be split as

zII = Q2z+Q1z̄, żII = Q2a+Q1ā, (4)

into independent and dependent coordinates z,a ∈ R f , and z̄, ā ∈ Rnc , respectively. The latter can be determined from the
constraint equations at velocity and acceleration level (2) as

z̄ =−(CQ1)
−1 (CQ2z+ ct) and ā =−(CQ1)

−1 (CQ2a+ ctt) , (5)

whereby CQ1 = RT
1 and CQ2 = 000. Using Eq. (5) to substitute the dependent velocities and accelerations in Eq. (4) yields

zII = Q2z−Q1R−T
1 ct, (6a)

żII = Q2a−Q1R−T
1 ctt. (6b)



Plugging Eq. (6a) in into the kinematic relation of the system equations (1) gives

żI −Z
(
Q2z−Q1R−T

1 ct
)
= 000. (7)

Moreover, the variation δzII = Q2δz of Eq. (6a), and Eq. (6b) are plugged in into Jourdain’s principle of mechanics yielding

δzTQT
2
{

M
(
Q2a−Q1R−T

1 ctt
)
−CT

λλλ − f
}
= 0, ∀δz. (8)

Since QT
2 CT = 000, the reaction forces in Eq. (8) vanish and the minimal accelerations a can be determined as

a =
(
QT

2 MQ2
)−1 (QT

2 MQ1R−T
1 ctt +QT

2 f
)
. (9)

Equation (7) and Eq. (6b), in which the minimal accelerations (9) are incorporated, represent the multibody system in state-space
formulation and can be summarized as follows

żI = v(t,zI,zII,x) = Z
(
Q2QT

2 zII −Q1R−T
1 ct

)
,

żII = w(t,zI,zII,x) = Q2
(
QT

2 MQ2
)−1 (QT

2 MQ1R−T
1 ctt +QT

2 f
)
−Q1R−T

1 ctt.
(10)

It is worth mentioning that the minimal velocities z are expressed in terms of the redundant velocities zII. The relation z = QT
2 zII

is found by multiplying Eq. (4) from the left with QT
2 and exploiting QT

2 Q2 = I and QT
2 Q1 = 000.

3 Adjoint Differential Equations

The performance of the dynamic system (10) shall be assessed with the comparatively simple but general integral criterion
function

ψ(x) =
t1∫

t0

F(t,zI,zII, żII.x)dt. (11)

To determine the gradient ∇ψ = dψ/dx with the adjoint variable method, among others, the system of adjoint differential
equations

µ̇ =−
(

∂v
∂zI

)T

µ −
(

∂w
∂zI

)T(
ν +

∂F
∂ żII

)
− ∂F

∂zI
, ν̇ =−

(
∂v
∂zII

)T

µ −
(

∂w
∂zII

)T(
ν +

∂F
∂ żII

)
− ∂F

∂zII
. (12)

have to be set up and solved for the adjoint variables µ and ν . Therefore, as can be seen from Eq. (12), the derivatives of the
kinematic and kinetic function v and w with respect to the redundant position and velocity coordinates zI and zII are required to
set up the adjoint system. Thus, in contrast to existing formulations [1, 3, 4], the derivatives of Q2 and Q1R−T

1 with respect to
the redundant position variables zI j, j = 1(1)r have to be additionally provided.

There are two ways to determine these derivatives. On the one hand, the derivatives of Q1, Q2, and R1 with respect to zI j
are determined by direct or numerical differentiation of the QR decomposition algorithm. On the other hand, it is possible to
derive a set of linear equations to compute the derivatives of Q2 and Q1R−T

1 from Eq. (3) and the orthogonality conditions
QT

1 Q2 = CQ2 = 000 such that

∂Q2

∂ zI j
=−Q1R−T

1
∂C
∂ zI j

Q2,

[
C

QT
2

]
∂
(
Q1R−T

1

)
∂ zI j

=−


∂C
∂ zI j

Q1R−T
1

∂QT
2

∂ zI j
Q1R−T

1

 .

(13)

In this work, both approaches are compared with respect to the precision and computational costs in the adjoint sensitivity analysis
of rigid and flexible multibody systems. As application examples, a rigid spring pendulum and a flexible slider-crank mechanism
modeled with the floating frame of reference formulation are presented.
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