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EXTENDED ABSTRACT

1 Introduction

The coupled multibody and hydraulics modeling methods [1] are often used in the real-time simulation and analysis of hydrauli-
cally driven machines such as excavators, wheel loaders, and tractors. Through real-time simulation methods, the human operator
commands can interact with the simulated machines via simulators or hardware replicating the real machine operation. In the
coupled modeling methods [1], the lumped fluid theory [2] computes the hydraulic pressure derivatives by dividing the effective
bulk modulus with small volumes. However, the lumped fluid theory introduces numerical stiffness in the coupled simulation
methods affecting the computational efficiency. This problem gets more profound in the simulation of complicated industrial
systems. To this end, to optimize the system states, this study proposes the use of a simplified hydraulic model with the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [3] as an alternative approach to the lumped fluid theory. The CMA-ES
is preferred over other optimization algorithms due to the requirement of less number of generations, better search properties,
and ease of using parallelization methods [3]. As an example, the simplified hydraulic model with CMA-ES is implemented on
a hydraulically actuated four bar mechanism. The results of the proposed approach are compared with the lumped fluid theory.
This new approach could be used to improve the computational efficiency of the coupled multibody simulation methods.

2 Modeling of Coupled Systems

Multibody systems A mechanical closed-loop system can be expressed into the independent position vector zi and velocity
vector żi using the coordinate partitioning method as,[
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represent the accumulated mass matrix and

accumulated force vector, respectively. Here, Rz is the velocity transformation matrix, Rd is the block-diagonal matrix, T is the
constant path matrix, M is the composite mass matrix of the system, Q is vector of the composite forces and D represent the
absolute accelerations, when the vector of accelerations z̈ is zero. The reader is referred to [1] for the details of the coordinate
partitioning method. The force produced by the hydraulic cylinder Fh = p1A1 − p2A2 −Fµ is combined with Q to model the
hydraulically driven systems. Here, p1, p2, A1 and A2 are the pressures and areas on the piston and piston-rod side, respectively.
Fµ represents the friction force.

Lumped Fluid Theory The pressures and the effective bulk modulus Beh in the hydraulic circuit can be modelled using the
lumped theory [2] as,
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where ṗh is the first derivative of hydraulic pressure, Vh is the hydraulic volume, and Qs is the sum of incoming and outgoing
flows. Moreover, Bo is the oil bulk modulus, Vc is the sub-volume, and Bc is the bulk modulus of the sub-volume. The flow rate
in Eq. (2) can be computed using the semi-empirical method [2]. For instance, using this method, the flow rate Qd through a
directional control valve can be expressed as Qd =CvUsgn(∆p)

√
| ∆p |. Cv is the semi-empirical flow rate coefficient, U is the

relative position of the spool, sgn(·) is the signum function to define the direction of flow rate, and ∆p is the pressure difference
over the valve ports. The voltage signal U can be expressed in differential form as U̇ =

Ure f −U
τ

. Here, Ure f defines the reference
voltage signal and τ is the time constant describing the valve dynamics.

Simplified hydraulics model The hydraulic force Fs can be expressed using the simplified hydraulics model as,

Fs = aUi +b0 +b1s0 +b1si +b2ṡi, (3)

where a is the hydraulic force gain parameter, and b0, b1 and b2 are the hydraulic force bias parameters. Ui is the input signal, si
is the actuator position, ṡi is the actuator velocity at the time step i and s0 is the initial actuator position.



3 Results and Conclusion

Figure 1 shows a hydraulically actuated four bar mechanism. The mechanism is actuated by a constant pressure source pP via
a 4/3 directional control valve and a tank of pressure pT . Angle z1and angular velocity ż1 of the body 1 in the mechanism are
optimized using the proposed approach.

Figure 1: Hydraulically actuated four bar mechanism. Qd1 and Qd2 are the flow rates in the control volumes in V1 and V2.

Computational accuracy and efficiency Figures 2(a)–2(c) describe the numerical results of CMA-ES application against the
lumped fluid theory. In the Figures, the light grey color region demonstrates the extension, and the light orange region represents
the retraction of the hydraulic cylinder. As can be seen, the CMA-ES algorithm enables the computation of z1 and ż1. Further,
the percent normalized root mean square errors in simplified hydraulics with respect to lumped theory are 0.26 % and 0.23 %
for z1 and ż1, respectively. This error can be further reduced by tuning the parameters of CMA-ES and simplified hydraulics.
The computational efficiency of simplified hydraulics with CMA-ES against the lumped fluid theory is shown in Figure 2(c)
during the simulation time. In the MATLAB environment, the CMA-ES driven approach is approximately 10 times faster than
the lumped fluid theory.

(a) Angle z1 of body 1. (b) Angular velocity ż1. (c) Computational speed.

Figure 2: Numerical accuracy and computational time of simplified hydraulics against the lumped fluid theory.

This approach demonstrates an alternative approach to the lumped fluid theory improving the computational efficiency of the
coupled multibody simulation methods. In future studies, this approach can be coupled with the multibody system dynamics
formulation to explain its computational accuracy and efficiency benefits. Further, the CMA-ES approach could be used with the
state and parameter estimation, artificial intelligence, and deep learning methods to optimize system states and parameters as it
improves the accuracy and reduces the noise in sensors measurements [3].
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