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EXTENDED ABSTRACT

1 Introduction

Limbless organisms perform a wide range of locomotion patterns viz undulatory (C. elegans), crawling (maggots), or inching
(caterpillar) gait, to name a few. Although one-dimensional beam-based element has been developed to simulate these patterns,
still the origin of specific locomotion patterns is not fully understood [1]. Furthermore, a 3D mechanics-based model considering
the active response of muscle activity and anisotropic interface frictional forces is not available in the literature.

We propose a general 3D finite element-based computational framework to study the locomotion pattern in the limbless organism.
In particular, a novel contact law and growth model is developed to characterise the distinct gait performed by limbless worms on
the soft substrate. Additionally, optimal locomotion strategies have been studied within the framework of optimal control theory
and the resulting discrete large-scale Non-Linear Programming problem (NLP) is solved efficiently with the iterative strategy.

2 Computational framework: Optimal control

Lets us consider an undeformed limbless organism with muscles oriented along preferred direction iii in the reference configuration
(Ωo). Muscles activity has been modelled as multiplicative decomposition of deformation gradient (F := FeFg) into inelastic
growth (Fg := I+uiii⊗ iii with active growth u) and passive elastic response (Fe with Je := det(Fe)). The worm is modelled as a
Neo-Hookean solid with Helmholtz free energy per unit intermediate configuration ψe (:= λo

2 (lnJe)
2 +µ(Tr(Ee)− lnJe), µ and

λo are shear and bulk modulus, respectively). For thermodynamic consistency, the First Piola-Kirchhoff stress tensor emerged as
P = Jg

∂ψe

∂Fe
F−T

g (with Jg := det(Fg)) [2]. Worm-soft substrate interaction is modelled in Ωo with following anisotropic contact
law (µt and µl friction coefficient along the tangential and lateral direction, respectively)

ttto =−B(τττ,nnn,vvv)vvv (1)
B(τττ,nnn,vvv) = µl(I−nnn⊗nnn)+(µt −µl)(τττ ⊗ τττ) (2)

2µt = µ f +µb +
(
µ f −µb

)
c(vvv,τττ) (3)

where B is frictional tensor, nnn is substrate normal, τττ is tangential direction and vvv is velocity field. c = sign(vvv · τττ) ≈ tanh
( vvv·τττ

ε

)
,

ε ≈ 0.1 a Tanh-regularisation parameter. µ f and µb are friction coefficients along the forward and reverse direction, respectively.

At any time ’t’ in the absence of body and inertia forces, linear momentum balance results in governing Partial Differential
Equation (PDE) (ν is a regularisation coefficient). Proceeding to the discretisation of space with finite element (FE), weak form
of the PDE is expressed as an Ordinary Differential Equations (ODEs) and written as (where x̃xx is nodal position of FE grid)

ν ẋxx+∇XXX ·P = 000
PN̂NN = ttto
xxx(XXX ,0) = xxx0

Space discretisation with FE
˙̃xxx = fff (x̃xx,u)
x̃xx(0) = xxx0

(4)

Let us proceed formally towards the optimal control framework to study the optimal locomotion strategies in the limbless organ-
ism. Considering this, we aim to solve the following minimisation problem

min
x̃xx,uuu

J(x̃xx,uuu) (5)

s.t.,
fff (x̃xx,uuu)− ˙̃xxx = 000 (State ODE)
x̃xx(0)− xxx0 = 000 (Initial conditions)
uuu ∈ [Umin,Umax] (Control bounds) (6)

Below performance index has been used in this study (xxxcm represents the centre of mass position at time t, xxxd is the desired centre
of mass position, T is the final time, and α ≈ 10−5 penalises the magnitude of muscle growth (uuu)).

J(x̃xx,uuu) :=
∫ T

0

(
1
2
(xxxcm − xxxd)

T(xxxcm − xxxd)+
α

2
uuuTuuu

)
dt +

1
2
(xxxcm(T )− xxxd)

T(xxxcm(T )− xxxd) =
∫ T

0
(r(x̃xx)+q(uuu))dt +φ(x̃xx(T )) (7)



We introduce Lagrangian multipliers (λλλ , and ξξξ ) and define an augmented Lagrangian functional (assuming uuu ∈ [Umin,Umax])

L (xxx,uuu;λλλ ,ξξξ ) :=
∫ T

0

(
H (xxx,uuu;λλλ )−λλλ

T ˙̃xxx
)

dt +ξξξ
T
(x̃xx(0)− xxx0)+φ(x̃xx(T )) (8)

where H (x̃xx,uuu;λλλ ) := r(x̃xx)+q(uuu)+ fff (x̃xx,uuu)Tλλλ is known as control Hamiltonian.

Optimality conditions results in adjoint equations (λ̇λλ = −∇x̃xxH ), ordinary differential equations (˙̃xxx = ∇λλλ H ), and control
equation (uuu = min(Umax,max(Umin,argmin

ũuu
H (x̃xx(ũuu),λλλ (ũuu), ũuu))) with two-point boundary conditions (x̃xx(0) = xxx0 and λλλ (T ) =

∇x̃xxφ(x̃xx(T ))). Optimality conditions have been efficiently solved with Forward-Backward Sweep Method (FBSM) [3,4].

3 Numerical Examples

We present two numerical examples to examine the universality of the proposed computational framework. The first example
consists of the generation of distinct gait patterns performed by caterpillar (inching), maggot (crawling) and C. elegans (undu-
latory). For the first two gaits, frictional anisotropy is along the forward and reverse direction of advancement, however, for C.
elegans it is along the direction of advancement and direction normal to it (see Fig. 1a). The next example seeks optimal control
(growth distribution) which propels C. elegan centre of mass from reference configuration (xxxcm = {5,0,0}) to the desired target
location (xxxd = {1,0,0}) in 4s. FBSM is initiated by assigning growth uuu = 0.01 ∈ [−0.3,0.3] to active muscles (FE cells) and
optimal control predicts a travelling growth wave opposite to the direction of advancement (see Fig. 1b).
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Figure 1: Limbless locomotion on soft substrate: (a) distinct gait patterns (with forward dynamics), and (b) optimal locomotion
of C. elegans: the evolution of centre of mass (xxxcm) and growth distribution (uuu).

4 Conclusion

In this work, we have presented a novel computational framework for locomotion in the limbless organism. Central ideas have
been validated and applied to the challenging problems of soft robotics. In future, we will extend the proposed framework to
study the optimal locomotion pattern in inchworms and maggot-like gait.
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