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EXTENDED ABSTRACT

1 Introduction

In the study of multibody dynamics, one faces inevitably problems like the parameterization of large rotations without singulari-
ties, [4]. Lie group integrators that avoid the use of local coordinates are used successfully for this problem class, [1]. Practical
experience shows that implicit methods of that type share typically the favourable stability properties of their classical counter-
parts if applied to stiff systems. This is the reason why the implicit methods are preferred when solving mechanical dynamical
systems. Per time step, they usually have higher numerical costs in terms of computation time and efficiency, but they return
more precise results independently from the time step size.
In an ongoing research project, we study contractivity of differential equations on Riemannian manifolds [6] using logarithmic
matrix norms of a projected system Jacobian. In that way, contractive problems may be analysed by Gronwall estimates [3] and
by their counterparts in a time-discrete setting [2] to investigate contractivity of the Lie group integrators.
These analytical investigations are combined with numerical experiments for implicit and explicit Lie group integrators that will
be discussed in detail in the present paper. We consider gradient flows on S2 and T S2 and observe (as expected) limitations for the
time step size of explicit Lie group integrators to guarantee contractivity of the numerical solution. There are no such step size
bounds for the implicit Lie-Euler method, that shows contractivity (in terms of the novel analytical setting on the Riemannian
manifold) for any time step size.

2 Methodology

Definition 1 (Implicit Lie-Euler). Let ẏ = f (y) := A(y)y be a system on the Lie group G, where A(y) ∈ g, with g denoting the
corresponding Lie algebra. The implicit Lie-Euler method finds the solution at time tn+1 = tn + τ as yn+1 = exp(τA(yn+1))◦ yn.

We are now interested in the property of contractivity. From classical theory, we know that the implicit Euler is unconditionally
contractive for contractive problems in linear spaces. As hypothesis, we formulate the contractivity of the implicit Lie-Euler on
S2.

Hypothesis 1. Let d be the Riemannian distance on S2. Let consider the logarithmic norm according to Definition 2 and let
µ[ f ′(ξ )]≤ ν , ∀ξ . Then, for any two implicit Lie-Euler solutions ỹn+1,yn+1 starting from ỹn and yn, respectively,

d (ỹn+1,yn+1)≤ (1− τν)−1d (ỹn,yn) , ∀τ, τν < 1 (1)

The Riemannian distance on the manifold S2 ⊂ R3 is defined by d (p,q) = 2arcsin(∥p−q∥2/2), where p, q ∈ S2. In the
following numerical tests on T S2, the definition of distance is naturally extended by the Sasaki metric, [5].

Definition 2. [Logarithmic norm] Let A be a given matrix. The logarithmic norm µ[A] of A is µ[A] = lim∆→0+
∥I+∆A∥−1

∆
.

In the specific case, we are interested in ∥ ·∥g, where g is the metric of the manifold and G is the relative metric tensor. Then, we
have µ[A] = max{λ |λ is an eigenvalue of

((
GAG−1 +A⊤)/2

)
}.

3 Numerical results

A simple example of a contractive problem on a manifold is the gradient flow. We perform the study both on the unit sphere
S2 ⊂ R3 and on its tangent bundle T S2. Hypothesis 1 has been formulated only for S2, but the numerical examples on T S2 show
the same behaviour and are therefore interesting.
The following systems are obtained based on a function E = E(y), which can be considered an energy function, and its Rie-
mannian gradient. Let M be a manifold, E : M → R a scalar function on the manifold. The dynamical system ẏ = −grad(E)
represents the gradient flow on M.
On the unit sphere, the given energy function is E(q) = 1/2q⊤Dq, where q ∈ S2 and D ∈ R3×3 is a diagonal matrix with two
equal entries. The system describing the gradient flow is

q̇ =−Dq+2E(q)q (2)



When solving the problem on T S2, we define E(q,ω) = 1/2q⊤Dq+1/2ω⊤ω , where (q,ω) ∈ T S2, and D ∈ R3×3 has the same
properties as in S2. After some manipulation, we end up with the system

q̇ = q×
(

q× ∂E
∂q

−q⊤
∂E
∂ω

)
, ω̇ = ω ×

(
q× ∂E

∂q
−q⊤

∂E
∂ω

)
+q×

(
q× ∂E

∂ω

)
(3)

Observing the two systems, we can make a parallel to mechanical systems described by ODEs. In particular, if we consider the
function E as an energy, then we can see it being composed of a potential energy and a kinetic energy. On S2, the energy has only
the contribution of the potential energy, while in T S2, both the potential and the kinetic energy add up for the total energy. The
resulting systems are a parallel respectively to a first order ODE and a second order ODE. For that reason, the interest in such
simple examples is evident.
In Figure 1, we compare the Riemannian distance between the flow of two solutions. We solve both the problems with an explicit
Lie-Euler method and an implicit one for two different initial values. The study is done for increasing values of the time step size.
Since the methods are one step methods, we can perform this study over a one step simulation. By deduction, if the property is
valid on one step, it will be valid for the entire time interval.
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(b) Test in T S2
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Figure 1: Riemannian distance on the specified manifold.

We observe that the qualitative behaviour of the measure is the same for the problem on S2 and on T S2. In the two tests, the matrix
D is the same and the initial values are different, hence the different distance. Nevertheless, the behaviour of the solutions (exact
and numerical) looks comparable. In both cases, when the exact solution is contractive, the implicit Lie-Euler is contractive for
any size of the time step. On the contrary, the explicit Lie-Euler does not have this property. The numerical solution obtained with
the implicit Lie-Euler performs as the exact solution. When the latter is contractive, then the numerical solution is contractive as
well. We must notice that the statement is valid only when the logarithmic norm of the symmetric part of the Jacobian is non-
positive. Checking this assumption is rather simple in S2, and it results in the restriction for the initial conditions. In spherical
coordinates, it translates to the restriction on (φ(t0),θ(t0))

−π

2
≤ φ(t0)≤−π

4
, ∀θ(t0) ∈ [0,2π] (4)

The numerical test results illustrate contractivity of the implicit Lie-Euler method independently of the time step size. This result
allows us to use coarse grid discretisation in time, without losing the desired property.
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