
ECCOMAS Thematic Conference on Multibody Dynamics
July 24 - 28, 2023, Lisbon, Portugal

Energy-consistent integration of mechanical systems based on Livens principle
Philipp L. Kinon, Peter Betsch

Institute of Mechanics,
Karlsruhe Institute of Technology (KIT)

Otto-Ammann-Platz 9, 76131 Karlsruhe, Germany
philipp.kinon@kit.edu, peter.betsch@kit.edu

EXTENDED ABSTRACT

1 Overview

In this work we make us of Livens principle (sometimes also referred to as Hamilton-Pontryagin principle) in order to obtain
a novel structure-preserving integration scheme for mechanical systems. In contrast to the canonical Hamiltonian equations of
motion, the Euler-Lagrange equations pertaining to Livens principle circumvent the need to invert the mass matrix. This is an
essential advantage with respect to singular mass matrices, which can yield severe difficulties for the modelling and simulation
of multibody systems (see, for example, Udwadia & Phohomsiri [1] and García de Jalón & Gutiérrez [2]). Moreover, Livens
principle unifies both Lagrangian and Hamiltonian viewpoints on mechanics. Additionally, the present framework avoids the
need to know the system’s Hamiltonian. The novel scheme algorithmically conserves a general energy function and aims at the
preservation of momentum maps corresponding to symmetries of the system. The performance of the newly devised method is
studied in representative examples.

2 Hamiltonian dynamics

Consider the motion of a dynamical system with d degrees of freedom with positions q∈Q and velocities q̇∈ TqQ, where Q⊂Rd

denotes the configuration space and TqQ⊂ Rd the tangent space to Q at q. The system’s Lagrangian L : T Q→ R is given by

L(q, q̇) = T (q, q̇)−V (q) =
1
2

q̇ ·M(q)q̇−V (q) , (1)

where T : T Q→R is the kinetic energy, M(q) ∈Rd×d denotes the symmetric and positive-semidefinite mass matrix and V : Q→
R is a potential function. The corresponding Hamiltonian H : T ∗Q→R can be obtained by employing a Legendre transformation
FL : (q, q̇) 7→ (q, p), where p := D2L(q, q̇) are the conjugate momenta, such that

H(q, p) = p · q̇(q, p)−L(q, q̇(q, p)) . (2)

Given a Lagrangian (1), the Hamiltonian reads H(q, p) = T (q, p)+V (q) = 1
2 p ·M(q)−1 p+V (q). Correspondingly, the Hamil-

tonian equations of motion appear in their canonical form

q̇ = D2H(q, p) = M(q)−1 p , (3a)
ṗ =−D1H(q, p) =−D1T (q, p)−DV (q) . (3b)

However, this approach is limited to systems, for which a Hamiltonian can be found and the mass matrix is non-singular. Thus,
we now want to introduce a different and more general framework.

3 Livens principle

From Hamilton’s principle of least action one can proceed by allowing the velocities to be independent variables v ∈ Rd . The
kinematic relation q̇ = v can be enforced by means of Lagrange multipliers p∈Rd . The corresponding augmented action integral
for the simulation time t ∈ [0,T ] reads

S(q,v, p) =
∫ T

0
[L(q,v)+ p · (q̇− v)] dt (4)

and is called Livens principle. By stating the stationary condition δS(q,v, p) = 0 and executing the variations with respect to
every independent variable, one obtains the equations of motion

q̇ = v , (5a)
ṗ = D1L(q,v) , (5b)
p = D2L(q,v) . (5c)



With regard to (5c) the Lagrange multiplier p can be identified as the conjugate momentum. Thus, Livens principle automatically
accounts for the Legendre transformation (2), whereas within the framework of Hamiltonian dynamics momentum variables have
to be defined a priori using the fiber derivative. In analogy to (2), a generalized energy function

E(q,v, p) = p · v−L(q,v) (6)

can be introduced. It can be shown that the generalized energy is conserved along solutions of (5), i.e. dE/dt = 0.

Note that after reinserting (5c) into (5b) and making use of (5a), Livens principle traces back to the Lagrangian equations of
the second kind. For mechanical systems with Lagrangian (1), relation (5c) yields p = M(q)v, so that, if M is nonsingular, (5a)
and (5b) directly lead to the canonical Hamiltonian equations of motion (3). Moreover, the generalized energy function can be
identified as the Hamiltonian, such that E(q,v(q, p), p) = H(q, p).

Initially termed Livens principle (cf. Sec. 26.2 in Pars [3]) after G.H. Livens, who proposed this functional for the first time (cf.
Livens [4]), later also the name Hamilton-Pontryagin principle has been coined for functional (4). More recently, preliminary
works [5, 6] by the authors of this constribution have taken up Livens principle in order to obtain a novel variational principle, the
GGL principle which extends Livens principle to holonomically constrained systems. In these works, new structure-preserving
integrators for systems with constant mass matrix have been developed.

4 Structure-preserving discretization

In this work, a novel integration method is proposed, which conserves first integrals of the equations of motion at hand, e.g. the
generalized energy function E. This scheme results from a direct discretization of the Euler-Lagrange equations (5) emanating
from Livens principle. Particularly, discrete derivatives D : Rm×Rm→ Rm in the sense of Gonzalez [7] are taken into account.
Those discrete derivatives represent second-order approximation to the exact gradients such that for a given function f : Rm→R
we have

D f (x,y) = D f (z)+
f (y)− f (x)−D f (z) · v

||v||2
v (7)

with z = (x+y)/2, v = y−x and ||• || denoting the standard Euclidean norm on Rm. Discrete derivatives satisfy the directionality
condition D f (x,y) ·v= f (y)− f (x) as well as the consistency condition D f (x,y)=D f (z)+O(||v||). Correspondingly, partitioned
discrete derivatives can be defined.

5 Conclusion

The newly proposed structure-preserving integration schesme differs from the method presented by Gonzalez [7] with respect
to the formulation in a more general (not necessarily Hamiltonian) framework. Thus, the need for the inversion of the mass
matrix is avoided, which circumvents numerical instabilities near singular configurations. The method discretely covers the
conservation of the generalized energy (6), i.e. En+1 = En and aims at the preservation of momentum maps corresponding to the
system’s symmetries. It can be observed, that the integrator is second-order accurate. The presented framework can be extended
to mechanical systems subject to holonomic constraints.
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