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EXTENDED ABSTRACT

1 Introduction

Highly slender structures undergoing large displacements, such as beams, cables or flexible plates are integral parts of most
modern high performance engineering systems. Interest in their virtual simulation has strongly increased in recent years [1].
Modeling their contact interactions is especially challenging since on top of the geometric nonlinearities, unilateral contact
constraints have to be handled. Most works until now focus on smoothed penalty type approaches [2, 3] with the exception
of [4, 5]. In [6], the authors proposed a mortar method for beam-to-beam contact in the static frictionless case. Here, we
present an extension to frictional dynamics in the framework of the nonsmooth generalized-α (NSGA) time integration scheme
following the developments in [7]. It is combined with the beam finite element formulation on the special Euclidean group [8].
The equations of motion, including the contact forces, are expressed in the local frame attached to the beam centerline and are
written on a Lie group resulting in interesting frame invariance properties.

2 Numerical method

Time integration is based on an appropriate Lie group update procedure where the current configuration qn+1 is represented by
an increment vector ∆qn+1

qn+1 = qn expSE(3)(∆qn+1). (1)

A splitting of position and velocity into smooth and nonsmooth contributions is performed such that the solution to the following
sequence of subproblems needs to be found.

• Smooth prediction of q̃n+1, ṽn+1, ˙̃vn+1:

M(q̃n+1) ˙̃vn+1− f(q̃n+1, ṽn+1, tn+1) = 0. (2)

• Correction of the position increment ∆qn+1 = ∆q̃n+1 +Un+1 by enforcing the frictional contact constraints at postion level
via the Lagrange multiplier νννn+1:
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• Computation of the velocity jump vn+1 = ṽn+1 +Wn+1 by solving a contact problem formulated at velocity level with the
multiplier ΛΛΛn+1:
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For Eq. (2) the usual generalized-α integration formulae are employed. For Eqs. (3) and (4) we use an augmented Lagrangian
technique as in [9] combined with a semismooth Newton algorithm. The discretized mortar constraints are written in the local
contact frame {nn, t1,n, t2,n} which is kept fixed for the duration of the time step
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and the corresponding constraint gradient is

g j
q,n+1 =

[
g j

Nq,n+1

g j
T q,n+1

]
=
∫

γc

φφφ
j
n+1SL,n+1Q j

n+1 ds, (6)

where the operator SL takes quantities from the local frames associated to the beam centerline to express them in the local contact
frame attached to the surface of the beam

SL,n+1 = RT
OL,n

[
−ROC,n+1 ROF,n+1

]
M (7)

and where M depends on the shape of the cross-section.

3 Preliminary results

A first comparison of collocation type and mortar contact formulations, with and without friction is illustrated in Fig. 1. The
proposed methodology is able to deal with discontinuous velocities stemming from impacts and stick-slip transitions. All beam-
to-beam contact algorithms were implemented in the research code Odin [10].
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Figure 1: Dynamic twisting example: Time evolution of the
vertical component of position and velocity of the beam middle
point.
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