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EXTENDED ABSTRACT

1 Introduction

In recent years, state estimation techniques based on the Augmented Kalman filter [1] have been successfully used for nonlinear
structural mechanics applications [2]. This approach assumes an Ordinary Differential Equation description of the underlying
model used in the estimation algorithm. An Augmented Extended Kalman filter (AEKF) applicable to Differential Algebraic
Equation (DAE)-described models has been introduced in [3]. This formulations is applicable to Multibody (MB) problems,
as it enforces the holonomic MB constraints throughout the estimation process via projection of the Kalman update steps onto
the constraints manifold. This contribution further extends the framework developed in [3] in order to perform estimation of
parameters that are related to the holonomic constraints. The necessary theoretical framework and a numerical validation case
are presented in the following sections.

2 Theory
In this work, MB systems are described in the continuous time domain using the following set of index-2 DAEs [4]:
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Where: q,v € R™ constitute the set of system generalized coordinates and first derivatives; u,A € R"s are, respectively, the two
sets of Lagrange multipliers for position level and velocity levels constraints; g € R"¢ is the set of holonomic algebraic constraint
equations, with G € IR"s*"a its Jacobian with respect to q; ¢ is the function that describes the equation of motion of a MB system
in a condensed form; p represents a parameter that influences the constraint function g. Accurate estimation of its value is the
objective of this work. To accomplish this task using an AEKEF, it is common to extend the set of DAEs (1-3) with a random walk
model to represent the dynamics of the unknown parameter to be estimated:

p=0 @)
The estimator used in this work is derived from the well-known AEKF formulation. The state vector is definedasx=[q” v’ p|T.
Expressing the set of equations (1-4) in discrete-time as fq, using k as timestep index, the state-space formulation becomes:
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where y € R is the measurement signal; h is the measurement function; @ and € are zero-mean Gaussian noises with known
diagonal covariance matrices Q and R that represent, respectively, uncertainties on both the system dynamics and the measure-
ment equation. The estimator provides an estimate of the first two statistical moments of x given the sequence of measurements
{yk}. The first moment is the mean value of the estimate, referred to as X, the second moment is the state error covariance matrix
P. At each time step, the AEKF used in this work performs the following actions:

1. Prediction: via integrations of the equations of motion, and propagation of the error covariance matrix using the plant

error covariance matrix Q, the algorithm provides a predicted estimate of X |, P, ;.

2. Correction: using the Kalman update procedure, X, P are corrected as to decrease the mismatch between the measurement
Yi+1 and the prediction h(%; ), taking into account the measurement noise covariance matrix R. The end results are the
corrected estimates f(,;_l, Pkt .

3. Constraint enforcement: to ensure that the post-correction estimate is constraint-compliant, f(,:rl is projected onto the
holonomic constraint manifold by solving the following constrained optimization problem:
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Repeating these actions at each timestep, the end result is a sequence of estimates {X; } that is compliant with the set of constraints
applied to the MB system.
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Figure 1: Visualization of the system used in the numerical validation.
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Figure 2: Estimation results of the validation.

3 Numerical Validation

The methodology has been validated with a virtual experiment. The MB system under exam consists of a rigid pendulum
connected via revolute joint to the ground. The rotational axis of this joint is at an angle of 5°with respect to the world frame’s
z-axis. A visualization is provided in Figure 1. This system is used as reference to obtain position measurements that are going
to be used in the estimator. White noise is added to the signal. The estimator uses a system that is equal to the reference one, but
whose plane of rotation corresponds to the xy plane. The objective of the AEKF is the accurate estimation of the misalignment
angle p. The results are visible in Figure 2: both the misalignment angle and the position of the pendulum are correctly estimated.

4 Conclusions

In this work, an AEKF formulation suitable for MB problems has been extended for the purposes of joint parameter estimation,
and validated with a numerical experiment in which the rotational axis of a revolute joint has been corrected starting from noisy
measurements coming from a reference system.
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