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EXTENDED ABSTRACT

1 Introduction

The most widely-used and accepted dissipative contact force model is that which was proposed by Hunt and Crossley in 1975.
Equation (1) presents the Hunt-Crossley model in its equivalent dynamic form,

mδ̈ +λδ
n
δ̇ +Kδ

n = 0, (1)

where δ is the relative deformation. Since this formulation, most of the proceeding work done on the model has been in the
determination of λ . λ , the hysteresis damping coefficient, unlike the mass, m, and (sometimes) the stiffness, K, is not intrinsically
understood, and as such has no analytically derived expression. Therefore, to compute λ , it is common practice to relate it to the
coefficient of restitution, cr. Many researchers have proposed expressions for λ in terms of cr, done initially by Hunt-Crossley
themselves and henceforth by Lankarani-Nikravesh, Flores et al., Hu-Guo, and others [1, 2, 3, 4]. These expressions, however,
are all restricted to cases of low damping, and become quickly inaccurate where energy losses are high.

2 Problem description

One goal of this work is to indeed provide an improved expression for λ , one that accommodates cases of high damping. This
work seeks similarly, however, to derive an expression for the system stiffness also. Although more intrinsically understood,
analytical expressions for K are still limited and exist only for special cases, in the contact between two linear elastic spheres,
for example [2]. For more complex contacts, K becomes another unknown parameter. If the stiffness, therefore, can be related to
an empirical parameter in a similar way as λ is done to cr, the general practicality of the Hunt-Crossley model would be greatly
improved and its use far more variable. In this work, it is desired to reformulate the Hunt-Crossley equation, present a more
accurate expression for λ that accommodates cases of high damping, and generate an empirical method for determining K.

3 Applied methods and results

3.1 Hysteresis damping ratio and impact natural frequency

Before determining expressions for λ and K, it is first useful to derive more fundamental analytic expressions of the dynamic
equation. Like the traditional linear Kelvin-Voigt model, similar behavioral parameters can be derived for the Hunt-Crossley
model, namely the hysteresis damping ratio and impact natural frequency. Through the nondimensionalization of equation (1)
and subsequent manipulations, the two parameters are derived as follows:

ε =
λ δ̇0

K
, (2)

ωi =

[
Kδ̇0

n−1

m

] 1
n+1

. (3)

ε is the hysteresis damping ratio, ωi is the impact natural frequency, and δ̇0 is the relative velocity before impact. Analytical
expressions for damping ratio and natural frequency are useful in that they enable one to better understand which parameters
affect damping and impact duration. With these parameters, a new dimensional form of equation (1) is derived:

δ̈ +
ω

n+1
i

δ̇0
n δ

n(εδ̇ + δ̇0) = 0. (4)

3.2 Expression for hysteresis damping coefficient

The current limiting step in determining an accurate expression for λ in terms of cr is in the velocity-deformation relationship,
δ̇ (δ ). The velocity throughout impact can be split into the compression (δ̇c) and restitution (δ̇r) phases, and, when λ = 0 (no



damping), there are exact analytical solutions for them. However, when λ ̸= 0, there are no such solutions, and approximations
must be used. The accuracy of these approximations is crucial in the accuracy of the derived λ (cr) function. The best approxi-
mations used currently, used by Hu-Guo, Flores et al., and others, are those of the λ = 0 analytical solutions with cr multiplied
to the restitution function [3, 4]. The final λ (cr) expressions derived from these approximations fair well for cr > 0.6 or so, but
better approximations can be made to accommodate cr approaching zero. The approximations in this work are as follow:

δ̇c = δ̇0
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δ
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] 1
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,
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δ
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)n+1
] 1
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.

(5)

Here, p = α(e−βcr − e−β ), where α and β are constants. This introduced p function accommodates how the velocity functions
deviate from a perfect square root with respect to decreasing restitution coefficient, accommodating cases of high damping. The
value of p ranges from 0 to 1/2. With these new velocity approximations, the hysteresis damping coefficient is derived using the
traditional energy balance method. The result in terms of the hysteresis damping ratio is presented:

ε(cr) =
(3+2α(e−βcr − e−β ))(1− c2

r )

2cr

(
3+2α(e−βcr − e−β )

3−2α(e−βcr − e−β )
+ cr

)−1

. (6)

Fitting the constants α and β against the numerical solution for ε(cr) gives α = 1.381 and β = 0.451. On the range of restitution
coefficients to 0.01 (0.01 ≤ cr ≤ 1.0), the relative error in equation (6) to the numerical solution is 0.062% compared to the
Hu-Guo solution of 47.768% and the Flores et al. solution of 57.617% [3, 4].

3.3 Expression for impact natural frequency (system stiffness)

With an expression for ε , equation (4) can now be used to model an impact if the system stiffness is known. If K is unknown,
however, ωi is also unknown and the model is still unusable. The derived expression for the impact natural frequency in section 3.1
is now useful for it can be related to another empirical parameter, that being the impact time, ∆t. Working with the dimensionless
form of equation (1), an expression for the dimensionless impact time, ∆τ , is derived through a step-by-step fitting approach:

∆τ(ε,n) = ae−bε +(c−de− f n)ε +(gn−h)e−in − jn+ k. (7)

Here, e is Euler’s Number and a, b, c, d, f , g, h, i, j, and k are numerical constants. Through surface fitting equation (7) to the
numerical solution, the constants produced are a = 0.180, b = 0.880, c = 0.853, d = 1.018, f = 0.461, g = 1.434, h = 0.864,
i = 0.771, j = 0.023, and k = 2.695. The relative error in equation (7) to the numerical solution is is 0.237%. Converting to
dimensional form, an expression for ωi in terms of ∆t is derived (which can be used with equation (3) to determine K):

ωi(ε,n,∆t) =
1
∆t

[
ae−bε +(c−de− f n)ε +(gn−h)e−in − jn+ k

]
. (8)

4 Conclusion

In this work, a new form of the Hunt-Crossley contact force model is presented with derived parameters ε and ωi. The formulation
of these two parameters is useful in that they give insight into behavioral aspects of Hunt-Crossley not previously considered.
From new approximations of the compression and restitution phase velocity functions that take into account profile changes,
a more accurate expression for the hysteresis damping coefficient/ratio is presented to accommodate cases of high damping.
Finally, an expression for the impact natural frequency is produced, for general ε and n, that relates it to impact time, a first time
method for allowing K, alongside λ , to be determined empirically.
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