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EXTENDED ABSTRACT

Many engineering systems experience impact due to joint clearances, joint locking, and/or collisions between different com-
ponents. Various research efforts have been conducted in this area to generate appropriate models when a multibody system
experiences impacts [2, 7]. These models are generally created based on two different approaches: piecewise method and contin-
uous approach. In the continuous method which is the focus of this paper, contacting bodies are allowed to experience penetration
during the period of impact, resulting in the continuous change in the positions and velocities. Therefore, contact force fc is active
during the period of impact. For instance, for a direct central impact of spheres of masses mi and m j in Fig.1, equations of motion
for each body during the period of contact can be constructed as

miδ̈i =− fc, m jδ̈ j = fc, (1)

where δi and δ j denote the coordinates of the mass centers of spheres i and j, respectively in the direction of n normal to the
surface of contact. Defining the penetration δ = δi −δ j and effective mass me f f =

mim j
mi+m j

[8], the following Ordinary Differential
Equation (ODE) governs the dynamics of the penetration

me f f δ̈ =− fc, δ (0) =−
δ = 0 , δ̇ (0) = −

δ̇ , (2)

where −δ and −δ̇ are the indentation and indentation speed immediately before the impact. The contact force fc is mainly
represented by a logical point-to-point spring-damper element [3] as

fc = fd + kδ
n, (3)

where fd is the damping force and kδ n represents the spring force. The values of k and n depend on the geometry and/or the
material properties of the contacting surfaces [6]. The main challenge in this model is how to express the damping force. For
example, a linear damper in the form of

fd = cδ̇ (4)

has been used in Kelvin-Voigt viscoelastic model [3]. The dotted curve in Fig. 2 shows the behavior of this contact force versus
penetration. It is observed that a non-zero compressive contact force exists at point A which corresponds to −t, immediately
before the impact, while point B represents the separation of spheres. It is clear that using this model beyond point B generates a
non-physical tensile force. Using an optimization approach, the damping coefficient c in Eq. (4) has been expressed as [9]

c = A (eB −1)
[
k (−δ̇ )n−1 (me f f )

n
] 1

n+1
, (5)

A = 0.3331 n4 −1.48 n3 +3.077 n2 −2.306 n+1.794, B = 1.285 n0.2553 −1.725, (6)

such that the model does not generate the non-physical behavior beyond point B. In this expression, e represents the coefficient
of restitution defined as e =−+δ̇

−δ̇
, where +δ̇ is the indentation speed immediately after the impact.

To account for non-physical tensile contact force beyond point B, Hunt and Crossley [5] proposed the damping force in the form
of

fd = µδ̇δ
n, (7)
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Figure 1: Direct-central impact of two spheres
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Figure 2: Behavior of the contact force versus penetration for different force models

where µ is called “hysteresis damping factor”. The dashed curve in Fig. 2 shows that colliding bodies experience zero contact
force and penetration at both beginning and end of contact. Various research efforts generated expression for the hysteresis
damping factor of Eq. (7) as [6, 4, 1]

µ =
3k(1− e2)

4(−δ̇ )
, µ =

3k(1− e)
2e(−δ̇ )

, µ =
8k(1− e)
5e(−δ̇ )

. (8)

As it is observed in Fig. 2, the dotted curve which is based on the damping model in Eq. (4) generates a non-zero force at the
beginning of impact which may not be realistic according to some reports [10]. On the other hand, the Hunt-Crossley model
with the damping force of Eq. (7) cannot represent impacts with non-zero deformation at the time of separation. In this paper, we
present a new model in the form of

fc = µδ̇δ + kδ
n, (9)

which accounts for both of the shortcomings of the two models explained previously. The new model which is schematically
shown in the solid curve in Fig. 2 is able to generate a zero contact force at the beginning of impact, while capable of addressing
the situations with residual deformation at the end of impact. This will be accompanied by generating analytical and computa-
tional framework to find appropriate hysteresis damping factor. Finally, the new method is compared with already-established
techniques available in literature.
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