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EXTENDED ABSTRACT

1 Introduction and Problem Statement

Higher, faster, and further on the one hand, but also safer and more efficient on the other hand – this trend demands a great deal
of today’s and future engineers. In addition to this challenging maxim, economic aspects drive the push to reduce the time to
market of products required to master today’s challenges. This has resulted in society drifting away from physical testing and
towards virtual prototyping.

Multibody system (MBS) dynamics simulations are powerful tools to realistically analyse real-world, multiple-component de-
vices in their intended operating environment. However, the inherently non-linear governing equations are often partially un-
known. This is especially true for the equation of motion (EOM) terms representing contact forces acting within joints. Not only
is the effect of these forces on the dynamics not precisely known, but contact mechanisms, especially friction, are still poorly
understood [1]. Contact dynamics is still one the most challenging areas in the engineering sciences [2].

The aforementioned problems may be addressed with data-driven approaches, especially in our era, marked by an abundance of
data and computing power. There have been exciting advances in the field of data-driven science and engineering, which enable
researchers to, e.g., obtain the analytical expressions of the governing equations of dynamical systems [3, 4]. However, these
algorithms are often tested on academic problems with few degrees of freedom (DOFs) and/or simulated data, only. Also, it is
often assumed that the governing equations are fully unknown, which might go beyond what is necessary, as, e.g., inertia forces
are often known. So a more tailor-made strategy for MBSs would model analytically what can be modelled well and use data
only for the effects that are unknown and/or inherently hard to model with classic mechanical approaches.

2 Identification of Analytical Expressions of Unknown Joint Forces

Conventionally the EOMs of MBSs are formulated as index-3 differential algebraic equations (DAEs), where joints are assumed
to be ideal (geometrical constraints) and enforced using Lagrange multipliers. In reality, joints are not ideal but subjected to
complex contact phenomena, such as friction and gap opening/closing. In this case, the EOMs may be written (in 1st order form)
as

ṡss(t) = fff k (sss(t), t)+ fff u (sss(t), t) (1)

with the states sss(t) =
[
qqq(t)> q̇qq(t)>

]>
including the generalized coordinates qqq(t) and velocities q̇qq(t), and where the right hand

side (RHS) of Eq. (1) is split into known and unknown EOM terms, i.e., fff k (sss(t), t) and fff u (sss(t), t), respectively.1

The unknown EOM terms may be approximated as a weighted sum of non-linear functions stored in a library λλλ , i.e., [4]

f u
s (sss(t), t)≈ ξξξ

>
s λλλ (sss(t), t) ⇔ fff u (sss(t), t)≈ ΞΞΞ

>
λλλ (sss(t), t) , (2)

where
ΞΞΞ =

[
ξξξ 1 . . . ξξξ S

]
(3)

includes the weights ξξξ s (s = 1, . . . ,S) for all S states and 2

λλλ (sss(t), t) =

λ1 (sss(t), t)
...

λL (sss(t), t)

 e.g.
=


1

sss(t)◦n

...
sin(sss(t))

...

 . (4)

If one now defines the snapshot matrix of the states

SSS =
[
sss(t1) . . . sss(tM)

]
⇒ ṠSS =

[
ṡss(t1) . . . ṡss(tM)

]
, (5)

1•̇ denotes differentiation with respect to (w.r.t.) time t.
2•◦n denotes the Hadamard/element-wise nth (here n > 0) power of •.



and of the known RHS
FFFk =

[
fff k (sss(t1), t1) . . . fff k (sss(tM), tM)

]
, (6)

where M is the number of snapshots/measurements, one can write

ṠSS≈ FFFk +ΞΞΞ
>

ΛΛΛ, (7)

where
ΛΛΛ =

[
λλλ (sss(t1), t1) . . . λλλ (sss(tM), tM)

]
. (8)

To identify the analytical expressions of the unknown governing equation terms, the number of non-zero elements (nnze) in the
weight matrix has to be minimized while, e.g., satisfying a norm of the residual of Eq. (7) up to a user-defined tolerance τ , i.e.,

min nnze(ΞΞΞ) subject to
∥∥∥ṠSS−FFFk−ΞΞΞ

>
ΛΛΛ

∥∥∥< τ, (9)

which is usually achieved with a sparsity-promoting algorithm, such as the sequential thresholded least-squares (STLS) [4] or
least absolute shrinkage and selection operator (LASSO) [5] algorithm. Measures to ensure physicality of the solution may also
be introduced such as enforcing passivity or satisfying Newton’s third law.

3 Experimental Setup

In order to evaluate the robustness and practical applicability
of the proposed technique, a physical crank-shaft-mechanism
test bed is used. A closed-loop controlled motor drives the
crank with a desired velocity profile, while a piezo-transducer
measures the resulting reaction forces and torques. A series of
motion-tracking, laser-based and acceleration sensors measure
the dynamics of the system. This large range of measurements
ensure that a broad range of resolutions, bandwidths and abso-
lute accuracies are covered in order to provide the data-driven
approach with the best possible chance of capturing the system
physics. To support the data-driven approach, a numerical sim-
ulation receives the measured reaction forces at the motor and
generates a prediction for the system response. The data-driven
approach then merely has to bridge the gap from the numerical
prediction to the measurements. Figure 1: Digital mock-up of the crank-shaft-mechanism.

This single-degree of freedom (DOF) system has been designed to be modifiable to study the algorithm’s performance for various
types of data and dynamics. The contact surfaces of each joint can be swapped out or entire bodies can to modified to be more
flexible. This sensitivity analysis is helpful to determine what type of problems this approach is best suited for.

4 Conclusions

In summary, the goal of this contribution is to use data-driven approaches to (i) advance the understanding of the physics of joint
phenomena in MBSs, (ii) identify the analytical expressions of only the unknown joint contact forces, and (iii) test the algorithm
of Sect. 2 with actual experimental data on complex mechanical systems, such as the test bed described in Sect. 3.
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