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EXTENDED ABSTRACT

1 Introduction

In a recent conference paper [1], the authors reported (but did not prove) that for a general system of constrained particles, having
possible velocities represented by a partial velocity matrix, the partial velocity matrix is the modulus of a multibond-graph [2]
modulated transformer element, which represents the subsystem of embedded constraints described by the partial velocity matrix,
in the sense that the effort outputs of the transformer element are the particle-level constraint forces3 for the embedded constraints.
Although it is not the primary contribution of the paper, this fact is previously unreported in the literature.

2 Contribution

In this paper we provide a proof of the above-described fact, using the principle of virtual power. We further extend the result by
deriving, from the same principle, the bond-graph representation of an additional set of adjoined constraints, which could be in
general rheonomic, nonholonomic, and nonlinear in velocity [4]. This result is also unreported in the literature. To support the
proofs, we provide a statement of the principle of virtual power which is well adapted to the classification of constraints as being
either adjoined or embedded.
By combining the so-derived constraint subsystem bond graphs with an additional multibond subsystem, representing the particle
kinetic energies, we develop a complete system-level bond graph (see Fig. 1), from which Kane’s equations for the system can be
easily derived. Such a bond-graphic derivation of Kane’s equations, for a general particle system incorporating both embedded
constraints and adjoined nonlinear nonholonomic constraints, has not been previously reported in the literature.

Se : MTF

{𝒗𝑛}𝛌 | 𝛟 = 𝛟p (𝑡) fac

{ 𝑭ac
𝑛}

∂𝛟

∂{𝒗𝑛}T

𝑁𝐿

𝛌

1𝐿

𝑁

1

1 𝑆 MTF

∂{𝒗𝑛}
∂fT

1𝑁 𝑁
𝒑𝑛 = 𝑚𝑛𝒗𝑛

f
MTF1

¤q

Q
𝑁

Se : {𝑭𝑛}

{ 𝑭ec
𝑛} { ¤𝒑𝑛}e + e∗ + eac

𝑆𝑅

0
Free Particles

Embedded
Constraint
Subsystem

Adjoined
Constraint
Subsystem

Kinetic Energy
Subsystem

Figure 1: Bond-graph representation of constrained particle system

3 Discussion

By developing the system-level bond graph for a general system of constrained particles, we have found a result which could
be further generalized to systems incorporating rigid or flexible bodies, by approximating such continuous bodies by a large but
finite number of particles. The structure of the bond graph facilitates evaluation of the energy cost of rheonomic and nonlinear
nonholonomic constraints, which are in general active constraints delivering power to the system.

3Both this paper and the previous paper make use of an extension to Breedveld’s original multibond-graph dialect, allowing basis-free vectors as power-
conjugate efforts and flows on multibonds [3].



The literature rarely reports the use of the principle of virtual power with bond graphs; but in this work we find that this variational
principle is highly compatible with bond-graph representations. We further observe that the principle of virtual power is the
lowest order variational principle of mechanics which can provide solutions for systems with nonlinear nonholonomic constraints
[5], which certainly enhances its value in applications.

4 Conclusions

Although originally developed without reference to any variational principle [6, 7, 8], it has been recognized for some time that
Kane’s equations can be readily derived from the principle of virtual power [9, 10]. This paper strengthens that conclusion
by providing a particle-level bond-graphic derivation of Kane’s equations for a nonlinear nonholonomic system, the underlying
bond graph having been developed by application of the virtual power principle separately to embedded and adjoined constraint
subsystems.
We also call into question a customary practice in mechanics, which is to allow rheonomic constraints to be embedded in the
initial system description. This practice is fundamentally incompatible with the bond-graph methodology, because it makes it
impossible to determine the physical origins of time-based changes to the system kinetic energy. Our approach, which is no
less general, is to defer the introduction of rheonomic constraints until the system has been completely described in terms of its
generalized coordinates.
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