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EXTENDED ABSTRACT

1 Introduction

This paper addresses the problem of sliding beams shells, with special emphasis on situations where the sliding motion of the
structure is not prescribed a priori. Hamilton’s variational principle is used to derive the weak and strong forms of governing
equations based on the systematic use of Reynolds’ transport theorem. The strong form of the governing equations involve
the mechanical and configurational momentum equations, together with the proper boundary conditions. It is shown that the
configurational momentum equations are linear combinations of their mechanical counterparts and hence, are redundant. A weak
form of the same equations is also developed; the configurational and mechanical momentum equations become independent
because they combine in an integral form the strong mechanical and configurational momentum equations with their respective
natural boundary conditions. The arbitrary Lagrangian-Eulerian (ALE) formulation is proposed and numerical examples are
presented to contrast their relative performances [1, 2]. The predictions of both formulations are found to be in good agreement
with those obtained from an ABAQUS model using contact pairs. Clearly, the proper treatment of the configurational forces
impacts the accuracy of the model significantly.

2 Numerical Examples

g

Figure 1: A moving mass on a simply supported shell.

Figure 1 depicts a point mass of 40 kg moving on a simply supported plate of thickness h = 6 mm, length L1 = 1 m, and width
L2 = 1 m. The plate is made of steel with Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3. At the initial time, the
mass is located at the point (s̄1 = 0.2, s̄2 = 0.3) m on the plate, and constrained to slide. The mass-plate system deforms under
gravity g = 9.8 ms−2 acting in the opposite direction of unit vector iii3. At time t = 0, the mass is released and starts to slide on
the plate. The plate also vibrates vertically due to the effects of the moving mass. Closed form solutions exists for this problem
with the modal expansion technique.

The time history of position vector of the moving mass are shown in fig. 2 for in-plane components, r1 and r2, and in fig. 3
for out-of-plane component r3, respectively. The out-of-plane displacement of the center of the plate is also shown in fig. 3.
As expected, the concentrated mass moves back and forth in the range of s1 ∈ [s̄1, L1− s̄1] and s2 ∈ [s̄2, L2− s̄2]. The present
predictions agree well with closed-form solutions.
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Figure 2: In-plane components of the position vector of the moving mass: present r1 (◦), present r2 (�), analytical r1 (×),
analytical r2 (�).
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Figure 3: Out-of-plane component of the position vector of the moving mass and center of the plate: present for moving mass
(◦), analytical for moving mass (�), present for plate center (×), analytical for plate center (�).


