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Analysis of multibody dynamics under uncertainty using Time-dependent polynomial chaos
Seok Hee Han1, Hee-Sun Choi2, Hee Jong Lee3, Se Hwan Jeong3, Jin Hwan Choi1, Jin-Gyun Kim1

1 Department of Mechanical Engineering
(Integrated Engineering)
Kyung Hee University

Yongin-si, 17104, Republic of Korea
ygj030202@gmail.com,

{jhchoi, jingyun.kim}@khu.ac.kr

2 Korea Atomic Energy Research Institute
Daejeon, 34057, Republic of Korea

heesunchoi@kaeri.re.kr

3 Production Engineering Research Institute, LG Electronics.
Pyeongteak-si, Gyeonggi-do, Republic of Korea

{heejong2.lee, sehwan.jeong}@lge.com

EXTENDED ABSTRACT

1 Abstract

The uncertainty of mechanical systems can occur from a lack of information such as uncertain system parameters, random
inputs, random initial conditions, and random forces. In deterministic analysis, However, these uncertainties can not be consid-
ered because uncertain variables are often replaced by just deterministic mean values. To consider these uncertainties, statistical
approaches are commonly adopted. The Monte Carlo method is the most popular approach to account for uncertainty. The Monte
Carlo method can be easily applied to any problems and guarantee high accuracy regardless of the nonlinearity and complexity
of the problems. However, the Monte Carlo method is very expensive due to its slow convergence in terms of computational
cost. It is often impossible to use the Monte Carlo method in large mechanical systems. Recently, the polynomial chaos method
is getting attention because of its fast convergence property and ability to describe the uncertainty with functional representation.
Polynomial chaos has been widely developed in structural engineering and fluid engineering fields. The first application of the
polynomial chaos in multibody dynamics is carried out by Sandu et al. [1]. Sandu [1] successfully applied the polynomial chaos
method to constrained multibody dynamics systems. The polynomial chaos method can provide the stochastic representation of
the response of multibody dynamics systems in both time and frequency domains. However, it encounters a problem in the case
of the time domain with long-time integration. Generally, the orthogonal polynomial basis has optimality for the distribution of
the random input at the initial time, but after long-time integration, the basis loses its optimality [2]. In the sufficiently small
initial time interval, output random distribution can be represented by a combination of only a few terms of low order basis
that is optimally decided at initial. However, over time integration proceeds, the distribution of output is diversed into a unique
distribution, so higher order terms of basis are additionally required to represent the distribution. In [2, 3], a basis update method
for arbitrary measures is proposed to solve the long-time integration problem. Gerritsma [2] propose the time dependent polyno-
miacl chaos(TD-PC) process with the Gram-Schmidt orthogonalization to reconstruct optimal basis with arbitrary measures in
the first order ordinary differential equation. Ozan [3] applied the Karhunen-Loeve expansion into the basis update process for
non-Gaussian random process output. In this work, we apply the time dependent polynomial chaos in the multibody dynamics
problem to investigate the statistical uncertainty of the response after a long-time integration with only a few terms of low order
basis.
In practical engineering systems, physical responses under uncertainty can be represented as a random process as

u(t,ω) =
∞

∑
βββ

uβββ (t)φβββ (ξξξ (ω)), (1)

in terms of time and random domain. Here φβββ = φβ1 ×·· ·×φβd
are generalized Askey-Wiener scheme orthogonal polynomials,

ξξξ = (ξ1, · · · ,ξd) is the finite number of random variable for the random event ω and βββ = (β1, ...,βd) is the multi-indices. This
linear combination of mutually orthogonal polynomial basis converges in L2 sense [4]. The coefficients of polynomial chaos
expansion can be obtained by the orthogonal characteristic of polynomials as

uβββ (t) =
1

‖ φβββ (ξξξ ) ‖

∫
u(t,ω)φβββ (ξξξ ) f (ξξξ )dξξξ , ‖ φβββ ‖=

∫
φ

2
βββ
(ξξξ ) f (ξξξ )dξξξ , (2)

with respect to the joint probability density f (ξξξ ) of the random variable ξξξ . In practice, equation (1) is truncated in a finite number
of basis N = (d +P)!/(d!P!), where d is the stochastic dimension of the random variable and P is the order of the polynomial
chaos. The finite number of polynomial chaos expansion is represented as

u(t,ω) = ∑
|βββ |≤P

uβββ (t)
d

∏
j=1

φβ j(ξ j(ω)). (3)

The initially defined orthogonal basis is a function of the input random variable and depends only on the distribution of the
random variable. To consider the distribution of a uniquely divergent random variable at time ti, arbitrary polynomial basis has
to be constructed. Here the time domain is decomposed into n interval as {0, t1} ,{t1, t2} , ...,{tn−1, tn}. The arbitrary polynomial
basis defined as {

φ
(ti)
βββ

(ξξξ ,u(ti)); | βββ | ≤ P, βββ = (β1, · · · ,βd+m)
}
, (4)



where u(ti) denotes the system output at time ti and m is the number of output variables. The number of total basis at time ti
is N(ti) = ((d +m)+P)!/((d +m)!P!). Equation (4) is constructed based on the first 2N(ti) multivariate moments of random
variables. The Gram matrix can be represented as

[Gi, j] =
∫
(ξξξ ×u(ti))βββ i(ξξξ ×u(ti))βββ j dP, i, j = 1, · · · ,N(ti), (5)

where P is a probability measure and the elements are multivariate moments up to 2N(ti). Upper triangular matrix R can be
obtained by the Cholesky factorization G = RT R. From the Gram matrix, the orthogonal polynomial basis can be obtained as

φ
(ti)
βββ j

= r1, j(ξξξ ×u(ti))βββ 1 + · · ·+ r j, j(ξξξ ×u(ti))βββ j . (6)

where r are the elements of invers matrix R−1 of upper triangular matrix. For each time interval, a new orthogonal polynomial
basis is constructed based on the response of ti obtained in the previous time interval. The implementation of a time dependent
polynomial to a multibody dynamics is demonstrated using the single pendulum system. The multibody dynamics formulation
of the single pendulum is as follows

m 0 0 1 0
0 m 0 1 1
0 0 J Lsinθ −Lcosθ

1 0 Lsinθ 0 0
0 1 −Lcosθ 0 0




ẍ
ÿ
θ̈

λ1
λ2

=


0
−mg

0
−Lθ̇ 2 cosθ

−Lθ̇ 2 sinθ

 , (7)

where L = L̄+ L
′
ξ (L̄ = 1m,L

′
= 0.15m) is the random length of the pendulum, θ is the angular position, λ is the Lagrange

multiplier, and m,J,g are the mass of the pendulum, the moment of inertia, and the gravitational acceleration, respectively. The
random variable ξ is a normalized uniform distribution with zero mean and variance 1, and a Legendre polynomial is employed
for the initial polynomial basis. To apply the Galerkin projection to the equation (7), trigonometric terms are substituted to linear
terms as Lsinθ = x, Lcosθ = y, where x and y are Cartesian coordinates of the pendulum. Figure 1 shows the time evolution of
multibody dynamics system under uncertainty. A Monte Carlo method was performed to compare the results of time dependent
polynomial chaos solutions. In this study, we applied the time dependent polynomial chaos in the multibody dynamics system.
Time dependent polynomial chaos seems to be able to obtain the stochastic representation of multibody dynamics response over
long-time integration with only a few terms of low order basis.

Figure 1: The mean and variance of single pendulum result with polynomial chaos order P = 3 and Monte Carlo sample size =
100,000
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