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EXTENDED ABSTRACT

1 Introduction
Simulation is useful in engineering system design as it can shorten time-to-market, reduce costs, and provide more comprehensive
testing. In simulating complex non-linear dynamic systems such as a vehicle, one usually faces a trade-off between model
accuracy and simplicity. While high fidelity models offer higher accuracy, lower fidelity models are easier to implement and faster
to simulate. Despite the burgeoning compute power at our disposal, high-fidelity models are often times too computationally
expensive for applications such as model predictive control, state estimation, or large-scale traffic simulation. In this contribution
we seek to address the complexity/simulation-speed concern by developing reduced order models (ROMs) that are fast yet
sufficiently accurate. We propose a ROM that is fast and accurate for a large number of maneuvers that a vehicle usually
performs in road traffic, state estimation, sensitivity analysis, or for control design. Specifically, we establish a ROM whose
accuracy is acceptable over a broad range of state and input commands, and whose “training” requires calibration data that is
easily available. We use an approach in which we first fix the degree of freedom count of the model. Then, to make this ROM
accurate, we identify model parameters (θ ) by using a Bayesian inference framework [1]. The Bayesian approach views the
unknown parameters as random variables and aims at producing the associated conditional probability distributions, i.e., the
posterior distribution π(θ) = p(θ |y), given calibration data y. We use motion capture and thus calibration data is noisy, making
Bayesian inference preferable over optimization techniques. To demonstrate the approach, we generate a ROM for an 1/6th scale
vehicle, see Fig. 1a.

2 Methodology
The general problem is cast as y = G (θ)+ ε, ε ∼ N(0,Γ), where G : X 7→ Y denotes the reduced order vehicle model with
unknown parameters θ ∈ X ; y ∈ Y represents the available data with noise ε that follows a zero-mean normal distribution with
a covariance matrix Γ; and X and Y denote complete normed vector spaces. The goal is to estimate the posterior distribution
p(θ |y) via Bayesian inference p(θ |y) ∝ exp

(
− 1

2∥y−G (θ)∥2
Γ

)
p(θ), where p(θ) is the prior distribution that captures existing

approximate knowledge (if any) about the unknown parameters θ . We use Sequential Monte Carlo (SMC) [2] to draw samples
from the posterior distribution p(θ |y). Compared to the traditional Markov Chain Monte Carlo (MCMC) approach, SMC displays
better sampling of multi-modal distributions, and is more computational efficient. The ROM (G ) is a four-wheel vehicle model
[3] augmented with non-linear TMeasy tires [4], a map-based engine model and a kinematic powertrain model. The ROM
has lateral, longitudinal, yaw and roll DOF’s. Additionally, each of the TMeasy tires has first order differential equations for
the longitudinal and lateral tire deflections along with a differential equation associated with its rotation. We use the relatively
complex TMeasy tire model mainly due to two reasons, (i) TMeasy is valid in all driving situations and provides smooth transition
from standstill; and (ii) TMeasy tire parameters can easily be deduced by knowing its size, payload and friction coefficient with
the road which gives us great priors for parameter identification. The model is written in C++ and exposed to Python via SWIG.
When benchmarked on an Intel(R) Core(TM) i7-4770K CPU, the model, which is solved using a half-implicit integrator [5] with
a step size of 1e-3 (s), is found to be approximately 1000 times faster than real time.

3 Preliminary Results
To demonstrate the ROM-generation approach, we used our Autonomy Research Testbed (ART) vehicle, see Fig. 1a; it is con-
trolled by a Jetson Xavier and uses a 1300kV brushless motor [6]. To produce calibration data, we used an OptiTrack Motion
Capture room, where the vehicle’s movement could be traced precisely by 13 cameras updating at 100Hz. Here, we calibrate
the motor torque and loss curves using two simple maneuvers, namely a straight line acceleration with a ramp and step throttle
input, respectively. We apply the same inputs to both the ART and ROM vehicles and use the longitudinal velocity (u) as our
data (y). Along with the motor curves, we also sample the standard deviation of the noise (σu) in u. We use four SMC chains
in parallel to sample 1000 draws of each of our parameters. We assume uniform priors based on knowledge of the motor and
ESC specifications over a suitable range for the points in our curves and a half-normal prior over σu. The posterior, plotted after
performing Kernel Density Estimation (KDE) and normalizing the Y-axis, can be seen in Fig. 2a. We evaluate the convergence
of the posteriors using diagnostics such as split-R̂ and ensure that they are all less then 1.01 [7]. By taking the empirical mean
of the posterior distribution of our parameters, we can get the mean posterior motor torque and losses curve (Fig. 2b). We can
then sample the posterior distributions to evaluate the model response (see Fig. 2c). We quantify this fit of prediction using
the mean of the Root-Mean-Squared-Error (mean-RMSE) between the 100 response lines and the noisy data. The mean of the



(a) Vehicle run in the Motion Capture room to collect data.
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(b) Scaling analysis on the NVIDIA A100 GPU.

Figure 1: Vehicle used for calibration; almost 300,000 ROMs can be run in real time.

mean-RMSE over 5 test runs was found to be 0.014 over the ramp response and 0.020 for the step response. The calibration of
other parameters, especially those that play a role in lateral dynamics is ongoing. We extended the ROM to the GPU by writing
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Figure 2: Shown here are (a) Posterior obtained for the various points on the torque and loss curve (b) the Motor torque and losses
curve obtained by taking the mean of each of the posterior distributions (c) 100 model response (blue lines) with 100 different
draws of parameters from the posterior (Fig. 2a).

CUDA kernels that allow the simulation in parallel of multiple different vehicles with different input controls. A scaling analysis
of the ROM on a NVIDIA A100 GPU can be seen in Fig 1b.

4 Future Work
We plan to improve our ROM’s accuracy as well as answer several research questions. Specifically, (a) with the ROM fully
calibrated, we plan to use it for state estimation studies to assess how the fidelity of the vehicle dynamics model affects the
performance of a state estimator; (b) the GPU version of the model will be used to conduct large scale traffic simulations to
perform Human In the Loop (HIL) and traffic congestion studies; (c) we plan to carry out analysis of variance over the parameter
space – with the ability to run fast a large number of simulations on the GPU, we can evaluate Sobol sensitivity indices using
Monte Carlo methods [8] to determine what parameters or combination of parameters affect the model response the most for a
particular maneuver; and (d) study the inverse question, i.e. what maneuvers can help best identify model parameters of interest.
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