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 EXTENDED ABSTRACT  

1 Introduction 

Spacecraft equipped with a dexterous manipulator is crucial for many future space missions, such as debris removal and on-orbit 

assembly. In these missions, one basic but necessary task is that the end-effector of the manipulator needs to track a specific 

planned trajectory, as shown in Figure 1. However, control of such a floating spacecraft-manipulator system presents new 

challenges compared with well-researched fix-base manipulators. Since the base of space manipulator is not fixed to the ground, 

the motion of the manipulator’s joints leads to reaction motion of the base spacecraft. This dynamics coupling effect is not 

negligible and even dominant, when the mass and inertia ratios of the base spacecraft to the manipulator are of the same 

magnitude. To simulate and control the spacecraft-manipulator system, previous studies [1, 2] usually use specific rotation 

parameterizations, such as Euler angles and unit quaternions, to describe the orientations of the rigid bodies of these multibody 

systems. However, such parameterizations lead to not only numerical singularity issues, but also inaccurate integration results. 

To address these problems, a different but general dynamic modelling and control frame for the spacecraft-manipulator system 

is established in this study. Based on the inherent geometric nature of spatial rigid body motion, the twists from the screw theory, 

which is analogous to the lie algebra element from the Lie group theory, is used to formulate the dynamic equations and control 

algorithms. 
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Figure 1: Spatial spacecraft-manipulator system 

2 Hybrid twists and dynamic equations 

In order to derive a recursive formulae of differential kinematics, the “hybrid” twist [3] of body i  in the spacecraft-manipulator 

system is defined by 
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where R  is the rotation matrix of body i with respect to the inertial frame, p  is the displacement vector of origin i
O  of body 

i ’s body-fixed frame, s
ω  is the angular velocities of body i ,  b

v  is the translational velocities of origin i
O , and all these terms 

are resolved in the inertial frame. Then the recursive formula of each body twist can be obtained by propagating the twists 

according to the joint pair relations, starting from the base spacecraft (body 0) to the end effector (body n ). Furthermore, the 

dynamic equations of system and Jacobian of the end-effector can be derived in terms of the twists. To design the control 

algorithms in the next section, the succinct form of the system momentum can be written as 
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where the free-floating states means that the system momentum is conserved, and the free-flying state means that the nozzles 

and momentum wheels of the base-spacecraft can apply wrenches (thrusts and torques) to the system. 



3 Control algorithms 

In this section, two control algorithms are considered for controlling the configuration of the end-effector in co-simulation. The 

first control algorithm is the twist-space PI controller of the end-effector as follows 
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where d
 t  is the feedforward twist determined from the inverse kinematics, e

t  is the error twist, d
T  and T  are the desired and 

real configurations of the end-effector, respectively, and Log is the logarithmic mapping of SE(3) group. Different from classic 

PI controller on Euclidian space, Eq. (3) gives a feedback controller on Lie group, where the error twist is defined as the six-axis 

pose difference projected on the tangent space of manifold. This Lie group controller has better convergence rates and only one 

group of control parameters to be tuned. The second control algorithm is the nonlinear model predictive controller (NMPC), 

which solves the following optimal control problem: 
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where ( , ) x u is the cost function, Q  and R  are weight matrices of the state variables x  and control inputs u , respectively, 

and the constraint equations are related to the initial conditions, time integrations, control constraints and states constraints. 

4 Results 

Figure 2 shows the trajectory tracking results of co-simulation and the experimental setup in our laboratory. The proposed control 

algorithms have shown to be effective and accurate for the trajectory tracking problem. If the system is at free-floating state, the 

proposed twist-space PI controller is simple to implement and enables the smooth tracking of a slow trajectory. When a fast and 

accurate tracking of certain trajectory is required, the NMPC shows better performance by introducing nozzle thrusts as 

additional control inputs. Also, the multiple shooting method is used to convert the optimal control problem in Section 3 to a 

nonlinear programming problem. The results show that when a reasonable large prediction horizon is chosen, the computational 

efficiency can meet the real-time challenge posed by online controller hardware. Further researches will aim on the momentum-

energy conservation characteristics of the system in a controller framework, by using the the discrete mechanics optimal control 

and other geometric approaches. 

 

Figure 2: Results of co-simulation and the ground experimental setup in laboratory 
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