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EXTENDED ABSTRACT

1 Introduction

Studying nonlinear mechanical systems from a geometric point of view, one finds that symmetries and invariants contain valuable
information on their behaviour. These structural properties play a fundamental role when designing numerical methods leading
to so called geometric or structure preserving simulation tools. For example, variational integrators yield symplectic-momentum
conserving approximate trajectories. The benefits of structure preserving algorithms are widely accepted. On the one hand,
the fidelity of the approximate solution is improved compared to standard methods by representing symmetries and invariants
correctly. On the other hand, their preservation stabilises the numerical integration, which is beneficial for the computational
costs with regard to the required grid resolution and longterm simulation.

First, this talk addresses the development of structure preserving variational numerical methods for the simulation of ordinary
differential equations (ODEs) describing for example the dynamics of rigid multibody systems. Then, the focus is on the deriva-
tion of the nonlinear dynamic equations of geometrically exact beams in a variational setting and their integration in flexible
multibody system dynamics, e.g. using redundant coordinate or LIE group formulations. In addition to the standard ODE case
in time, variational integrators will be presented for static beam equilibria as well as for the partial differential equation (PDE)
case of flexible multibody dynamics. After that, optimal control problems are considered and the role of structure perservation
for their approximate solution is discussed.

2 Variational integrators – structure preservation

An overview on the derivation of the continuous and discrete EULER–LAGRANGE equations derived via variational principles
as well as their structural properties is given in Figure 2. In general, the LAGRANGIAN of a dynamical ODE system consists
of the difference between kinetic and potential energy. Then HAMILTON’s principle of stationary action leads to the EULER–
LAGRANGE equations. Thereby, the whole curve except for the end points is varied and the variational principle must hold for all
possible varied curves. Classical mechanics tells us, that the solution of the EULER–LAGRANGE equations – the LAGRANGIAN
flow – is symplectic and energy conserving. Furthermore, according to NOETHER’s theorem, invariance of the Lagrangian leads
to the conservation of a momentum map (for example linear or angular momentum) along the LAGRANGIAN flow.

Standard numerical schemes aim at a discretisation of the EULER–LAGRANGE equations. The key idea of variational integrators
is to start the discretisation already at the level of the variational principle [10]. The curve is replaced by a discrete path of
configurations and the LAGRANGIAN is replaced by a discrete LAGRANGIAN, which is an approximation of the action integral
over the continuous one. In the shown case, it depends on two subsequent discrete configurations. The kinetic energy involves a
finite difference approximation of the velocity and the potential energy is evaluated e.g. at the midpoint leading to a second order
accurate scheme. In general, one can choose a polynomial to approximate the trajectory and a quadrature rule to approximate the
action integral to derive higher order schemes.
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Figure 1: Phase portrait of a circular pendulum (red circle) in it’s vector field (green arrows) and approximation of the phase
portrait (blue line) using the explicit Euler method (left, spiraling outward), the implicit Euler method (second left, spiraling
inward) and the structure preserving symplectic Euler method (second right, almost circular) and the corresponding evolution of
the total energy of the simulations.



In this way, the action integral transforms into an action sum. Stationarity of this action sum requires to take variations of the
discrete configurations and the variational principle must hold for all paths of varied configurations. This procedure results
in the discrete EULER–LAGRANGE equations which constitute a time-stepping scheme. Due to its derivation via a discrete
variational principle, the solution is guaranteed to be structure preserving, which means it is symplectic, and there exists a
discrete NOETHER’s theorem guaranteeing that it conserves (maximally quadratic) momentum maps exactly in the presence of
symmetry. Furthermore, backward error analysis [13] tells us, that the energy error stays bounded also for longterm simulations.
Finally, there is a tool called variational error analysis [10, 12] relating the order of accuracy of a variational integrator to the
accuracy of the approximation of the action integral.

Since symplecticity and also NOETHER’s theorem are geometric properties (often called the geometric structure related to the
differential geometry background of the formulation), integrators which are able to inherit this are named geometric or struc-
ture preserving integrators. Even though they approximate the trajectory, they are able to represent the unique fingerprint of a
dynamical system correctly [10, 12, 5, 6, 13].

Figure 1 shows the approximation of the phase portrait of a circular pendulum using standard methods and symplectic integration.
It can be observed that the standard methods exhibit an artificial gain or dissipation of energy. In contrast to that, the structure
preserving symplectic method yields a phase portrait enclosing the correct area corresponding to a very good approximation of
the system’s energy conservation.

· LAGRANGIAN L : TQ→ R

· stationary action

δS = δ

∫ tN

0
L(q, q̇)dt = 0

· discrete LAGRANGIAN Ld : Q×Q→ R

· stationary discrete action

δSd = δ

N−1

∑
i=0

Ld(qi,qi+1) = 0

· EULER–LAGRANGE equations

∂L
∂q
− d

dt

(
∂L
∂ q̇

)
= 0

· discrete EULER–LAGRANGE equations

D1Ld(qi,qi+1)+D2Ld(qi−1,qi) = 0

· LAGRANGIAN flow

F t
L : TQ→ TQ

· symplecticity

· NOETHER theorem

· energy conservation

· discrete LAGRANGIAN flow

F∆t
Ld

: Q×Q→Q×Q

· symplecticity

· discrete NOETHER theorem

· good longterm energy behaviour

· variational error analysis

Figure 2: Derivation and structural properties of the continuous (left) and discrete (right) EULER–LAGRANGE equations.
Here Q denotes the configuration manifold and TQ its tangent bundle containing the time dependent configuration and
velocity (q(t), q̇(t)) with time t ∈ [0, tN ]. In the discrete setting, qi approximated the configuration at time node ti and ∆t
denotes the time step.



3 LIE group formulation of flexible multibody dynamics

Over the history of modelling multibody systems [15, 1], a multitude of descriptions has evolved for the kinematics of inter-
connected masspoints, rigid and flexible bodies. Dealing with finite rotations and the interconnecting constraints imposes major
challenges on the modelling as well as on numerical simulation procedures. In contrast to displacements/translations living in
linear spaces, finite rotations live in nonlinear spaces, specifically in the special orthogonal LIE group SO(3). As the latter is a
manifold, the modelling of multibody systems is naturally and inextricably related to differential geometry and we may speak of
geometric modelling.

A commonly used element in flexible multibody dynamics are geometrically exact COSSERAT beams. The COSSERAT beam
model can undergo shear, elongation, bending and torsion. At every point s ∈ [0,L] of the central line and at every time t ∈ [0, tN ],
the beam configuration variable can be chosen to represent the placement and a director triad representing the orientation of the
cross-section. The assumption of rigidity of the cross-section requires orthonormality of the directors giving rise to holonomic
constraints. Other structural elements like geometrically exact shells and rigid bodies can be modelled similarly by redundant
configuration variables consisting of placements and directors subject to constraints. In this constrained description, the coupling
of structural elements into flexible multibody systems via further constraints is straightforward – one arrives at a system of
differential algebraic equations (DAEs). A simple model for the deformation energy of a COSSERAT beam is e.g. of ST. VENANT-
KIRCHHOFF type. It is part of the potential energy involving derivatives with respect to the spatial parameter. The LAGRANGIAN
density of beam dynamics also includes the kinetic energy with temporal derivatives such that the EULER–LAGRANGE equations
of motion are PDEs on a domain with one temporal and one spatial dimension, see Figure 3.

However, the choice of coordinates representing the finite rotations is challenging, in particular spatial interpolations are neces-
sary for the spatial discretisation. When the interpolation is done independently for the translational and the rotational degrees
of freedom, this might lead to shear locking, meaning that the beam reacts overly stiff regarding shear. A standard workaround
known from the field of finite element methods is under-integration. In contrast to that, shear locking can also be avoided when
translational and rotational degrees of freedom are treated in a coupled way, which has to do with the geometric structure of the
chosen configuration manifold. The special Euclidian group SE(3) is a LIE group with a group operation that acts in a coupled
way on the translational and rotational degrees of freedom [16, 7]. Of course, there are other ways to represent the translational
and rotational degrees of freedom like EULER or CARDAN angles, or different LIE group formulations like unit quaternions,
which all have advantages and and disadvantages for the representation of finite rotations.

For flexible multibody systems consisting of masspoints, rigid bodies and geometrically exact beams, the equations of motion can
be derived as constrained PDEs from a variational principle, as summarised in Figure 3. Here, the action is a space-time integral.
The solution is multisymplectic, energy-conserving and also a NOETHER theorem holds. We can derive structure preserving
approximations to the flow via a discrete variational principle by approximating this action integral and requiring stationarity.

· LAGRANGIAN density L : SE(3)× se(3)2→ R

L(q(s, t) q̇(s, t)q′(s, t)) = T (q(s, t) q̇(s, t))−V (q(s, t)q′(s, t))

· constrained variational principle

δS = δ

∫ tN

0

∫ L

0

[
L
(
q(s, t), q̇(s, t),q′(s, t)

)
+ 〈λ (s, t),c(q(s, t))〉

]
dsdt = 0

· constrained EULER–LAGRANGE equations

PT (q) ·
[

∂L
∂q
− d

dt

(
∂L
∂ q̇

)
− d

ds

(
∂L
∂q′

)]
= 0

c(q) = 0

· multisymplecticity

· NOETHER theorem

· energy conservation

Figure 3: Fully variational derivation of the equations of motion for flexible multibody systems consisting of masspoints,
rigid bodies and geometrically exact beams. Here, the Lagrangian density (kinetic T minus potential V energy den-
sity) depends on the space-time dependent configuration variable q(s, t) as well as on its temporal and spatial derivatives
q̇(s, t),q′(s, t), respectively. The constraints c(q) = 0 represent the coupling of the interconnected bodies as well as internal
constraints depending on the representation of the finite rotations. They are enforced via LAGRANGE multipliers λ , which
are then eliminated by a null-space matrix P(q), that project the dynamics to the correct tangent space.



In Figure 7 (left), an example of a forward dynamics simulation of a flexible slider crank system is shown, where the colours
represent the stress in the flexible parts. Figure 4 shows snapshots of the motion of a beam with concentrated masses. This beam’s
LAGRANGIAN is invariant with respect to translation and rotation. Thus according to NOETHER’s theorem, linear and angular
momentum are conserved after the loading phase, as is the total energy.
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Figure 4: Geometrically exact beam with concentrated masses; snapshots of motion and deformation (top) and preservation of
linear and angular momentum and energy after the loading phase (bottom) [3].

4 Optimal control problem simulation

A classical optimal control problem is e.g. the reorientation of a spacecraft from a given initial to a given final state while
minimising a certain objective like the consumption of energy. The spacecraft in Figure 7 (right) can be represented as a rigid
main body and flexible appendages.

· minimise objective functional

min
y,τ

J(y,τ) =
∫ tN

0
C(y(t),τ(t))dt +Φ(y(tN))

subject to ẏ(t) = f (y(t),τ(t)) y(t0) = ȳ0

· indirect methods: first optimise – then discretise

· direct methods: first discretise – then optimise

Figure 5: In an optimal control problem, an objective functional J (here e.g. consisting of the integral over a running cost C
and a boundary term Φ) is minimised with respect to the state and control trajectories y(t),τ(t), while fulfilling the system’s
dynamics equations (e.g. with a right hand side function f ) and boundary conditions (e.g. given initial state ȳ0). For the
numerical solution , one can classify direct and indirect methods, which differ in the order of optimisation and discretisation.

Why is structure preserving integration also interesting in the numerical solution of optimal control problems? One distinguishes
two different approaches for the numerical solution of optimal control problems, as illustrated in Figure 5. First optimise then
discretise yields an indirect method. PONTRYAGIN’s maximum principle is applied to the HAMILTONIAN of the optimal control
problem, yielding the necessary optimality conditions. This results in the state-adjoint system being a boundary value problem,
which can be discretised and solved. On the other side, direct methods first discretise then optimise. The discretisation yields
a finite dimensional constrained nonlinear optimisation problem. A cost function depending on the discrete path of state and
control is minimised, while a discretisation of the system equations (together with boundary values) serves as constraints. The
optimisation results in the KARUSH KUHN TUCKER (KKT) conditions.

Naturally, the question arises, under which conditions the discretisation and optimisation steps commute and what are the con-



vergence orders for the state, control and adjoint variables. While in indirect methods, one actively chooses numerical methods
of particular order for the state-adjoint system, in direct methods one only chooses an integrator for the system equations and the
particular integration scheme (and its order) for the adjoint and control variables is determined in the procedure of deriving the
KKT conditions.

Figure 6: Symplectic methods provide a link between indirect and direct methods for the approximate solution of optimal control
problems.

To answer these questions, symplectic methods play a major role. First of all, they provide a link between indirect and direct
methods in the sense that direct methods can be interpreted as a symplectic integration of the necessary optimality conditions
[14, 11], as illustrated in Figure 6. In particular, solving the constrained nonlinear optimisation problem in direct methods
means to augment the objective function by the product of the discretised system equations and a LAGRANGE multiplier and the
derivation of the necessary optimality conditions (i.e. the KKT equations) can be interpreted as a discrete variational integrator
which is thus symplectic. Thus the same approximation can be obtained by solving the state-adjoint system from the indirect
method by a symplectic method. However, in general for direct methods, the schemes (and order) of approximation differs for the
state, adjoint and control variables. This is the second place, where symplectic integration shows its benefits. Using a symplectic
integration for the approximation of the system equations in the direct method, automatically yields the same scheme for the
approximation in all variables, and thus also the same order or approximation [4, 2, 11].

Figure 7: Slider crank mechanism consisting of geometrically exact beams and rigid bodies (left) [8] and spacecraft model
consisting of rigid main body and flexible appendages (right) [9].
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