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ABSTRACT

The theory of screws can be seen as a central tool for modeling the kinematics and
dynamics of spatial mechanisms, in particular robotic systems. Since screw theory
is based on the assumption of perfect rigid bodies, it is not readily applicable to the
analysis of flexible systems. This paper intends to contribute to an integral view of
‘displacements of rigid bodies’ and ‘deformations of flexible bodies’ by considering
the geometry of linear spatial deformations in analogy to the geometry of linear spa-
tial displacements. For this purpose, the principle of transference is applied to the
system of double numbers. Thus, a dual-number based formalism for modeling linear
deformations of flexible bodies is proposed including sibling versions of the Mozzi–
Chasles theorem and the Euler–Rodrigues formula.

Keywords: theory of screws, calculus of motors, principle of transference, flexible
bodies, linear elasticity

1 Introduction
The theory of screws [2] and the calculus of motors [31] take a central place in the areas of com-
putational kinematics and dynamics of multibody systems, in particular, for the application field
of robotics [13, 26, 22]. Here the notion of a screw extends the geometric element of a line [24]
to incorporate the rotational and translational aspects of motion (twist) and action (wrench) in
one unified concept. Screw theory is applied to identify and classify singularities of mechanisms
[16, 9] and to describe the mechanics of multibody systems in the context of Lie theory [23]
and geometric algebras [27, 19, 17]. Besides instantaneous analysis, screw theory is also appli-
cable to deal with finite displacements in mechanical systems. The calculus of motors [31, 7],
the ‘dual-number extension of the Rodrigues-formula’ [20] and the ‘product-of-exponentials for-
mula’ [8] provide crucial relationships for this purpose.

The usage of compliant mechanisms [21, 3, 34] in the design of robotic systems has become an
ongoing trend over the recent years. In soft robotics, deformable structures are used for grasping
tasks and for collaboration and interaction with the human. In precision applications, compliant
mechanisms are used in extreme environments under vacuum, low temperature, or radioactive
conditions. Since the theory of screws is based on the assumption of perfect rigid bodies, it is not
readily applicable to the analysis of flexible systems. The general law of motion for flexible bodies
is given by Hooke’s law relating the deformation (finite strain) of a flexible body linearly with the
force density (stress) acting upon it using the algebraic form of tensors [1, 28].

This paper intends to contribute to an integral view of the ‘displacement domain of rigid bodies’
and the ‘deformation domain of flexible bodies’. In pursuit of this general goal, we consider the
geometry of linear spatial deformations of flexible bodies in analogy with the geometry of linear
spatial displacements of rigid bodies. Elastic deformations of a physical object depend on material
attributes, as body shape and stiffness properties of the matter, as well as on the force distribution,
contact geometry, and friction characteristics. Thus, the precise modeling and control of compliant
mechanisms is a complex task [10, 34].



Within this paper, we only consider the geometry of elementary deformations: the material is
assumed to be incompressible, orientation-preserving, linear and isotropic. In this case, the model
of spatial deformations simplifies and the geometry of finite deformations is characterized by two
independent components, termed ‘(radial pure) shear’, and ‘(axial volumetric) squeeze’ which are
comparable to the rotation-translation dichotomy of rigid body displacements. The paper builds
on the distinction of the three binary number systems [30] of complex numbers, dual numbers, and
double numbers to describe both rigid body as well as compliant body motions (Section 2). As
complex numbers are capable to describe planar rotations, double numbers are capable to describe
planar pure shears. Screw theory is rooted in principle of transference [4] where dual numbers
are used together with complex number to describe spatial rigid body motion. Following a similar
approach, a dual-double number formalism for modeling linear finite deformations of flexible
bodies is proposed (Section 3). Consecutively, a sibling version of the Mozzi–Chasles theorem
about the existence of an invariant axis for linear displacements is reported (Section 4) for the
case of linear deformations together with variants of the ‘cylindric’ Euler–Rodrigues formula for
spatial displacements [20, 5].

2 Three Number Systems
Three systems of ‘binary numbers’ [18] have been indicated by Study [30] that feature a com-
mutative multiplication.1 They are denoted in unified form [18] as a p-number system Cp, with
p ∈

{
−1,0,+1

}
and q ..=

√
p, such that x+q · y ∈ Cp has the appearance of

x+q · y =


x+ i · y ∈ C for p= q2 = i2 =−1
x+ ε · y ∈ D for p= q2 = ε2 = 0
x+b · y ∈ B for p= q2 = b2 =+1

. (1)

For the systems of complex numbers C, dual numbers D, and double2 numbers B, and with real

numbers φ , x̊,ϕ ∈ R, the exponentials of the general definition exp(x) =
∞

∑
k=0

xk

k!
take the form

exp(i ·φ) = cos(φ)+ i · sin(φ) (2)

exp(ε · x̊) = 1+ ε · x̊ (3)

exp(b ·ϕ) = cosh(ϕ)+b · sinh(ϕ) , (4)

using properties of the powers ik ∈
{

1, i,−1,−i
}

and εk ∈
{

1,ε,0
}

and bk ∈
{

1,b
}

for the units i,
ε , b and exponents k ∈ N0.3,4 For a dual argument x̃ = x+ ε · x̊ ∈ D= R+ εR, the dual extension
of a function f fulfills the property [25]

f (x̃) = f (x)+ ε · x̊ · ∂

∂x( f )(x) . (5)

The form applies to (3) by exp(ε · x̊) = exp(0+ ε · x̊) so that exp(ε · x̊) = exp(0)+ ε · x̊ holds.5

2.1 Complex Numbers and Rotations
The exponential for complex numbers of (2) is wrapped in the form of (3×3)-matrices, replacing

the imaginary unit i by the generator matrix i ..=
( 0 −1 0
+1 0 0
0 0 0

)
, as

RRRz = exp
(
φ ·i

)
=

 cosφ −sinφ 0

+sinφ cosφ 0

0 0 1

 ∈ SO(3) (6)

1These three systems are also called (members of the family of) ‘generalized complex numbers’ [18].
2The concept of a double number z = x+b · y with b2 =+1 is attributed to William K. Clifford [12]. The name is

not used exclusively in literature, for example, the terms hyperbolic, perplex, split-complex, and pseudo-Euclidean are
also used. The plane of double numbers is also called Minkowski plane [29].

3Since Equation 2 is well-known as ‘Euler’s formula’, Equation 4 is also called ‘hyperbolic Euler’s formula’ [11].
4Equation 4 is extended to cover the four branches of the unit circle (Figure 1b) of the Minkowski plane in [11].
5By means of the ‘Galilean’ trigonometric functions cosg(x) ..= 1 and sing(x) ..= x, the dual exponential is expressed

as exp(ε · x̊) = cosg(x̊)+ ε · sing(x̊) in consistent form [33].
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(a) Complex circle and rotation for angle φ = π/6.
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(b) Double circle and squeeze for charge ϕ = π/6.

Figure 1: Illustrations for the complex ‘ordinary’ unit circle and the double ‘hyperbolic’ unit circle
and their kinematic interpretations as planar rotation (left) and planar deformation (right).

indicating a rotation about the axis êeez = (0,0,1)>. An illustration of the geometric effect of a
z-rotation in the xy-plane is given in Figure 1a. In order to render rotations in space, for a rotation
about an arbitrary axis n̂nn with norm one n̂nn = nnn

‖nnn‖ ∈ S2 ⊂ R3, the matrix exponential is obtained
from (6) replacing i≡ êee×z by the generator

n̂nn× ..=

(
0 −n3 n2
n3 0 −n1
−n2 n1 0

)
∈ so(3) ..=

{
MMM ∈ R3×3 |MMM> =−MMM,

}
. (7)

A rotation matrix matrix RRR ∈ SO(3) is given by Rodrigues’ rotation formula in trigonometric
form [5], with aaa⊗bbb = aaa ·bbb> as the dyadic product, and by the similarity to RRRz in the formulae:

RRR = exp(φ · n̂nn×) = cos(φ) · (−n̂nn× · n̂nn×)+ sin(φ) · n̂nn×+(n̂nn⊗ n̂nn)

= QQQ · exp(φ · êee×z ) ·QQQ> = exp(φ · (QQQ · êeez)
×) .

(8)

The set of all rotation matrices forms the special-orthogonal group

SO(3) ..=
{

BBB ∈ R3×3 | BBB>BBB = BBBBBB> = III, det(BBB) = +1
}
, (9)

each preserves volume, due to |det(BBB)|= 1, and orientation, due to the det(BBB)> 0 property.

2.2 Double Numbers and Squeezes
The exponential for double numbers in (4) is wrapped in form of (3× 3)-matrices, replacing the

double unit b by the generator matrix b ..=
( 0 +1 0
+1 0 0
0 0 0

)
(identical to AAA1 of Appendix C) as

EEE± = exp
(
ϕ ·b

)
=

 coshϕ +sinhϕ 0

+sinhϕ coshϕ 0

0 0 1

 ∈ SYM1(3) (10)

indicating a squeeze transform6 in the plane êee⊥z . In Figure 1b, the geometric effect of a z-squeeze
is illustrated. In contrast to the group of rotation matrices in Equation 9, the set of special matrices

SYM1(3) ..=
{

BBB ∈ R3×3 | BBB> = BBB, BBB� 0, det(BBB) = +1
}
, (11)

of which each preserves volume and orientation, does not form a group.7 In analogy to Rodrigues’
rotation formula (8), the exponential of a traceless symmetric matrix of the set

sym0(3)
..=
{

MMM ∈ R3×3 |MMM> = MMM, trace(MMM) = 0
}

(12)

is given by the closed-form given via its eigendecomposition as restated in the next theorem.
6A squeeze transform is alternately called a hyperbolic rotation or a pure shear. A simple shear is a combination

of pure shear and a rotation and does not feature a symmetric matrix.
7Symmetric matrices are not closed with respect to matrix multiplication, the product of two symmetric matrices

BBB,CCC ∈ SYM(3) is again symmetric only if BBBCCC =CCC BBB. Example BBB =
(

2 1
1 1
)

and CCC =
(

2
√

3√
3 2

)
with BBBCCC 6=CCC BBB.



Theorem 1 (Symmetric exponential). The exponential of a traceless symmetric θ ·SSS ∈ sym0(3) is
a special symmetric EEE ∈ SYM1(3), with det(EEE) = det(exp(θSSS)) = exp(trace(θSSS)) = 1, given by

EEE = exp
(
θ ·SSS

)
= exp(θ ·λA) · (q̂qqA⊗ q̂qqA)+ exp(θ ·λB) · (q̂qqB⊗ q̂qqB)+ exp(θ ·λA) · (q̂qqC⊗ q̂qqC) ,

eigenvalues λA,λB,λC ∈ R with λA +λB +λC = 0, and orthogonal eigenvectors q̂qqA, q̂qqB, q̂qqC ∈ R3.

The eigendecomposition of symmetric SSS reads SSS = QQQ ·diag(λλλ ) ·QQQ>, and the theorem follows via

exp
(
θ ·SSS

)
= exp

(
θ · (QQQ diag(λλλ )QQQ>)

)
= QQQ · exp(θ ·diag(λλλ )) ·QQQ> = ∑

X ∈ {A,B,C}
exp(θ ·λX) · (q̂qqX⊗ q̂qqX) ,

with QQQ = (q̂qqA|q̂qqB|q̂qqC) ∈ SO(3), vector λλλ = (λA,λB,λC)
> ∈ R3, and diag(λλλ ) =

(
λA 0 0
0 λB 0
0 0 λC

)
.

3 Principle of Transference
The transference principle for Euclidean geometry is recalled in Section 3.1 and varied for pseudo-
Euclidean geometry in Section 3.2. The ordinary principle extends planar rotations (complex
numbers) to spatial displacements (dual-complex numbers) and the converted principle extends
planar squeezes (double numbers) to spatial deformations (dual-double numbers).

3.1 Ordinary Trigonometry and Displacements
The principle of transference connects the geometry of the sphere with the geometry of space:
the dualification of a unit (direction) vector on the sphere n̂nn ∈ S2 ⊂ R3 to a dual (line) vector
Λ̂ΛΛ = n̂nn+ε ·mmm is an element of the ‘Study sphere’ [24], Λ̂ΛΛ∈T(S2)⊂D3 =R3+εR3. The principle
is attributed to Kotel’nikov and Study and has been stated [25] with a focus on geometry as:

"All valid laws and formulae relating to a system of intersecting unit line vectors (hence
involving real variables) are equally valid to an equivalent system of skew unit line vectors,

if each real variable in the formulae is replaced by the corresponding dual variable"

A condensed statement [4] in algebraic terms is “All identities of ordinary trigonometry hold true
for dual angles”. The concept of a dual angle is recalled next, using the notation x̃ ∈ D from (5).

Definition 1 (Dual angle). A ‘dual angle’ is a dual number φ̃ = φ + ε · s ∈ D of a primal part
φ ∈ R indicating an angle and a dual part s ∈ R indicating a shift.

For attributing a formula to this principle, the complex exponential of (2) is combined with the
dual exponential of (3) to the dual-complex exponential function

ˆ̃z = exp(i · φ̃) = exp(i · (φ + ε · s)) = exp(i ·φ)+ ε · s · exp(i ·φ) · i
=
(
cos(φ)+ i · sin(φ)

)
+ ε · s ·

(
−sin(φ)+ i · cos(φ)

)
,

(13)

compliant with the property of dual-number functions in (5). The geometric image of the dual
exponential function exp(i · φ̃) is illustrated as the dual-complex unit circle – identified as the
tangent bundle of the ordinary unit circle T(S1) – in Figure 2a. Equation 13 can be considered
as a ‘prototype’ for cylindric displacements along a fixed axis in space – the coordinate axis êeez is
chosen per convention [5]: For this spatial interpretation, the circle tangents are turned about π/2
‘out of the plane’ so that a ‘unit cylinder’ is achieved (Figure 4a).

Applying the transference principle to Rodrigues’ rotation formula of Equation 8, the line trans-
form in terms of (6×6)-adjoint matrices is obtained [5]. In particular, line transforms originate in
the concept of ‘motor calculus’ [31], for which a motor can be understood as the application of a
dual angle along an oriented line in space Λ̂ΛΛ as outlined in the next definition.

Definition 2 (Motor). A ‘motor’ is given by the dual product of (i) a ‘dual angle’ φ̃ = φ +ε · s ∈D
(a dual scalar) and (ii) an ‘axis’ (line) Λ̂ΛΛ = n̂nn+ ε ·mmm ∈ D3 (a dual vector). A motor maps one unit
line onto another.
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(a) Complex circle with tangents.
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(b) Double circle with tangents.

Figure 2: Illustration of the tangent bundle of complex (‘ordinary’) unit circle and of double (‘hy-
perbolic’) unit circle. The example rotation and squeeze for π/6 match with Figure 1. The gray
quadrilaterals in Fig. 2a and 2b are formed by (‘ordinary’ and ‘hyperbolic’) orthogonal vectors.

The computation of a motor’s dual angle and dual vector from a displacement using the (6× 6)-
adjoint representation as a line transform is reported [6]. For point transforms, the usual repre-
sentation as (4× 4)-matrices for homogeneous point coordinates ppp = (x,y,z, 1)> is obtained. A
point transform DDDz along the axis êeez is determined via the matrix exponential, where its argument
is given as a ‘helical screw’ displacement φ · $̂$$(h)

z with $̂$$(h)
z = êeez + ε ·h · êeez and pitch h ..= s/φ , or as

‘cylindric motor’ displacement φ̃ · Λ̂ΛΛz with Λ̂ΛΛz = êeez + ε ·000 in the formulae

DDDz = exp
(
cross(φ · $̂$$(h)

z )
)
= exp

(
φ ·i4 + s ·t4

)
=


cosφ −sinφ 0 0

+sinφ cosφ 0 0

0 0 1 s
0 0 0 1

 ∈ SE(3) . (14)

The term cross($̂$$(h)
z )=

( 0 −1 0 0
+1 0 0 0
0 0 0 h
0 0 0 0

)
is an instance of the matrix representation cross($̂$$(h))=

(
n̂nn× mmm
000 0

)
of a unit screw $̂$$(h) = n̂nn+ ε ·mmm(h) = n̂nn+ ε · (aaa× n̂nn+h · n̂nn), extending the skew-symmetric n̂nn× of (7).

The second argument uses the auxiliary matrices i4
..=

( 0 −1 0 0
+1 0 0 0
0 0 0 0
0 0 0 0

)
and t4

..=

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
.

3.2 Double Trigonometry and Deformations
For characterizing the geometry of linear deformations, the ‘flexible sibling’ of the transference
principle can be formulated in analogy to its ‘rigid counterpart’ as the conjecture:

“Valid formulae relating to linear deformations of a planar elastic body (involving
double variables) are equally valid to linear deformations of a spatial elastic body, if each
double variable in the formulae is replaced by the corresponding dual-double variable.”

In analogy to the brief form in Section 3.1, the principle is converted into the conjecture “All
identities of double trigonometry hold true for dual charges”. The concept of a dual charge given
in next definition is the ‘flexible version’ corresponding to the dual angle in Definition 1.

Definition 3 (Dual charge). A ‘dual charge’ is a dual number ϕ̃ = ϕ + ε ·g ∈ D of a primal part
ϕ ∈ R indicating a radial charge and a dual part g ∈ R indicating an axial charge.

For attributing a formula to this principle, the double exponential of Equation 4 is combined with
the dual exponential of Equation 3 to the dual-double exponential function

ẑ = exp(b · ϕ̃) = exp(b · (ϕ + ε ·g)) = exp(b ·ϕ)+ ε ·g · exp(b ·ϕ) ·b
=
(
cosh(ϕ)+b · sinh(ϕ)

)
+ ε ·g ·

(
sinh(ϕ)+b · cosh(ϕ)

) (15)

with the property of dual-number functions in (5). Next to the image of (13) in Figure 2a, the
image of exp(b · ϕ̃) in (15) as the dual-double unit circle is illustrated as the tangent bundle of
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(a) Forces τ tangential with object surfaces induce
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(b) Forces f normal to object surfaces induce a de-
formation of compression type.

Figure 3: Interpretation of a planar squeeze transform as a deformation of pure shear and of planar
compression. The images are obtained from Fig. 1b by turning about π/4 and scaling about

√
2.

the four-branched unit hyperbola in Figure 2b. If a linear deformation EEE preserves volume and
orientation of a body with det(EEE) = 1 and EEE ∈ SYM1(3), Theorem 1 tells by

EEE = exp
(
θ ·SSS

)
= QQQ · exp

(
θ ·diag(λA,λB,λC)

)
·QQQ>

with λA +λB +λC = 0, or in terms of λλλ = (λA,λB,λC)
> with λλλ ⊥ 111, that the spatial deformation

EEE is similar to a deformation of the unit sphere into an axis-aligned, isovolumetric ellipsoid of
principal axes of lengths λA, λB, and λC. Considering a deformation EEEz with QQQ = III, and EEEz =
exp
(
θ · diag(λA,λB,λC)

)
, the constraint trace(diag(λλλ )) = 0 is decomposed into a primal and a

dual part. With hhhz
..=
(
+1
−1
0

)
= 111× êeez and kkkz =

(
+1
+1
−2

)
..= 111×hhhz and letting

hz
..= diag

(
hhhz
)
=

+1 0 0

0 −1 0

0 0 0

 kz
..= diag

(
kkkz
)
=

+1 0 0

0 +1 0

0 0 −2

 (16)

corresponding to the Gell-Mann matrices AAA3 and AAA8 in Appendix C, the ‘radial shear’ deformation
HHHz in the plane êee⊥z and the ‘axial compression’ deformation KKKz along the axis êeez read

HHHz = exp
(
ϕ ·hz

)
=

eϕ 0 0

0 e−ϕ 0

0 0 1

 KKKz = exp
(
g ·kz

)
=

eg 0 0

0 eg 0

0 0 e−2g

 . (17)

In terms of these two components, the deformation EEEz is decomposed into the product

EEEz = exp
(
θλλλ
)
= HHHz ·KKKz = exp

(
ϕ ·hz +g ·kz

)
=

exp(g+ϕ) 0 0

0 exp(g−ϕ) 0

0 0 exp(−2g)

 , (18)

with determinant det(EEEz) = eϕ+g · eϕ−g · e−2g = 1. Two realizations of the planar shear HHHz of (17)
are given by Figure 3: A deformation in the plane (π/4-rotated to Figure 1b and Figure 2b) is
achieved by applying forces in parallel tangential with the surfaces in Figure 3a and normal to the
surfaces in Figure 3b. Since the axial compression KKKz in space of (17) distributes matter from
one source dimension onto two sink dimensions, a graphical interpretation would be given with
the surface of revolution obtained by using a (scaled) unit hyperbola as the generatrix along the
central axis êeez (other axes in Figure 3). The concept of a morphor in next definition is the ‘flexible
version’ corresponding to a motor of Definition 2.

Definition 4 (Morphor). A ‘morphor’ is given by (the dual part of) the dual product of (i) a ‘dual
charge’ ϕ̃ = ϕ + ε ·g ∈ D (a dual scalar) and (ii) a ‘parcel’ Γ̂ΓΓ = xxx+ ε · yyy ∈ D3 (a dual vector). A
morphor maps one unit cell onto another.



(a) Dual-complex unit circle illustrated of as a cylin-
der in space indicating the set of all displacement
sizes (‘dual angles’). A cylinder along the axis
of the rigid Mozzi–Chasles Theorem 2 is invariant
with respect to screw displacements about this axis.

(b) Dual-double unit circle illustrated as a maltese
cross in space indicating the set of all deformation
sizes (‘dual charges’). The shape is the basis for
the flexible Mozzi–Chasles Theorem 3 for oriented-
volume preserving deformations.

Figure 4: Spatial images of the dual extensions for the unit circle of the plane of complex and
double numbers. The shapes are spatial interpretations of the planar illustrations in Figure 2 turned
about π/4 along the z-axis. While the case of a pure rotation in Fig. 2a corresponds to the xy-plane
at z = 0, a pure shear in Fig. 2b and Fig. 3 corresponds to the xy-planes at z =+1 and z =−1.

By means of the dual vector kkkz + ε ·hhhz associated to êeez, the exponential argument ϕ ·hz +g ·kz in
(18) is obtained as the dual part of the product

(ϕ + ε ·g) ·diag
(
kkkz + ε ·hhhz

)
= ϕ ·kz + ε ·

(
ϕ ·hz +g ·kz

)
.

The parameters of the spatial deformation EEEz = HHHz ·KKKz of (18), combined of an axial shear HHHz and
a spatial compression KKKz, are illustrated in Figure 4b: The figure is named ‘maltese cross’ here
and can be considered as the product set of two orthgonal, axis aligned unit hyperbolas (Figure 3).

4 Reconfigurations in Space
This section reports theorems for the finite transforms for rigid bodies and for flexible bodies. In
Appendix A, the theorems for the instantaneous domain are stated for sake of completion.

4.1 Rigid Body Displacements
Theorem 2 (Serial spatial displacements). Any set of displacements applied in series equals a
combination of rotation and translation about a unique axis (Mozzi–Chasles). The combined
displacement can be rendered as a motor along that axis (Euler–Rodrigues) using the formulae:

DDD = exp
(
cross(φ · $̂$$)

)
= exp

(
cross(φ̃ · Λ̂ΛΛ)

)
= PPP4 ·DDDz ·PPP−1

4

= PPP4 · exp
(
φ ·i4

)
·PPP−1

4 ·PPP4 · exp
(
s ·t4

)
·PPP−1

4 = TTT4 ·RRR4 .
(19)

The second term yields the ‘screw-like’ and the third term the ‘cylinder-like interpretation’ [20]
interpretation of a displacement. The fourth term indicates the similarity to DDDz of Equation 14 via
PPP4 =

(
QQQ ppp
000 1

)
. The fifth term is the UQ decomposition with respect to TTT4 =

(
III ttt
000 1

)
and RRR4 =

(
RRR 000
000 1

)
.

4.2 Flexible Body Deformations
For brevity, the abbreviations nnn} ..=−(nnn×)2 and nnn� ..= nnn⊗nnn are used [5]. For an orthonormal basis
(q̂qqA|q̂qqB|q̂qqC)∈ SO(3), the identities q̂qq�C = q̂qq}B − q̂qq�A = q̂qq}A − q̂qq�B and q̂qq}C = q̂qq�A + q̂qq�B follow immediately
with q̂qq�A + q̂qq�B + q̂qq�C = III and III = q̂qq}C + q̂qq�C . Similar to the cross matrix identity (QQQ ·nnn)×=QQQ ·(nnn×) ·QQQ>,
the matrices nnn} and nnn� are characterized by the equations

(QQQ ·nnn)} = QQQ · (nnn}) ·QQQ> (QQQ ·nnn)� = QQQ · (nnn�) ·QQQ> . (20)



Rigid body kinematics Flexible body kinematics

Finite transform displacement DDD∼= (RRR, ttt) deformation EEE ∼= (HHH,KKK)

Primary operand line (direction + moment) point (‘no primal direction’)

Radial transform rotation (around axis) RRR pure shear (tangential) HHH
Axial transform translation (along axis) ttt compression (normal) KKK

Special set unit sphere with x2 + y2 + z2 = 1 ‘unit plane’ with x+ y+ z = 1

Compound dual angle φ̃ = φ + ε · s ‘dual charge’ ϕ̃ = ϕ + ε ·g
variable radial φ =

∫
ω and axial s =

∫
v radial ϕ ∼= τ and axial g∼= f

Geometry / numbers ordinary / complex hyperbolic / double

Exp. argument skew-symmetric matrix (motor) symmetric-traceless matrix (‘morphor’)

Eigenspaces affine line in space (spear) three orthogonal axes (‘parcel’)

Transference attach tangent bundle to unit circle planar double circle to maltese cross

Transform types rotation to cylindric motion planar squeeze to spatial deformation

Table 1: Tabular comparison of displacements and deformations.

We consider the symmetric-traceless matrices hz = diag(hhhz) and kz = diag(kkkz) of (16) from a more
general point of view by means of the matrix function ‘quad’ defined as

quad(zzz,yyy) ..= zzz}−2 · yyy� . (21)

Here, zzz and yyy indicate the compressive radial and the compressive axial directions. The direction xxx
follows by xxx = yyy×zzz. For the case zzz⊥ yyy, ‘quad’ has the particular form quad(zzz,yyy) = (yyy×zzz)�−yyy�,
for the case zzz= yyy, the form is quad(zzz,zzz) = III−3 ·zzz�, both obtained via q̂qq}C = q̂qq�A + q̂qq�B . The diagonal
generator matrices hz = diag(hhhz) and kz = diag(kkkz) are recovered by

hz = diag(hhhz) = Hxy
..= quad(êeex× êeey, êeey) =

(
1 0 0
0 1 0
0 0 0

)
−2 ·

(
0 0 0
0 1 0
0 0 0

)
=
( 1 0 0

0 −1 0
0 0 0

)
kz = diag(kkkz) = Kxy

..= quad(êeex× êeey, êeex× êeey) =
(

1 0 0
0 1 0
0 0 0

)
−2 ·

(
0 0 0
0 0 0
0 0 1

)
=
( 1 0 0

0 1 0
0 0 −2

)
.

By means of the extended notions hz→ Hxy and kz→ Kxy, the plane êee⊥z is specified via the bivector
êeex ∧ êeey including the orientation of radial compression and tension.8 Using the identities in (20),
the rule quad(QQQ ·nnn,QQQ ·mmm) = QQQ ·quad(nnn,mmm) ·QQQ> is obtained which permits to state

HQxy
..= quad

(
QQQ · (êeex× êeey),QQQ · êeey

)
KQxy

..= quad
(
QQQ · (êeex× êeey),QQQ · (êeex× êeey)

)
.

The concept ‘parcel’ Γ̂ΓΓ in Definition 4 is proposed as Γ̂ΓΓ ..= xxx+ ε · yyy, identified with xxx∧ yyy for xxx =
QQQ · êeex and yyy = QQQ · êeey that determines the unit cell of a deformation EEE. The matrix form of Γ̂ΓΓ is thus
proposed (comparable to the skew-symmetric matrix form of a line) as the symmetric dual matrix
zq(xxx+ ε · yyy) = KQxy + ε ·HQxy = zqk(xxx,yyy)+ ε · zqh(xxx,yyy) ..= quad(xxx× yyy,yyy)+ ε ·quad(xxx× yyy,xxx× yyy).
With these preparations, the variation of Theorem 2 for elementary deformations is stated.

Theorem 3 (Parallel spatial deformations). Any set of deformations applied in parallel equals a
combination of shear and compression about a parcel (Mozzi–Chasles). The combined deforma-
tion can be rendered as a morphor along such parcel (Euler–Rodrigues) using the formulae

EEE = QQQ · exp
(
diag(θ ·λλλ )

)
·QQQ> = QQQ · exp

(
ϕ ·diag(hhhz)+g ·diag(kkkz)

)
·QQQ>

= QQQ · exp
(
ϕ ·Hxy

)
·QQQ> ·QQQ · exp

(
g ·Kxy

)
·QQQ>

= exp
(
ϕ ·HQxy

)
· exp

(
g ·KQxy

)
= HHH ·KKK .

(22)

The theorem follows from Theorem 1 with the orthogonal decomposition θ ·λλλ = ϕ ·hhhz+g ·kkkz that
exists for coplanar vectors λλλ ,hhhz,kkkz ∈ 111⊥ with hhhz ⊥ kkkz.

8See the matrices EEE± in Equation 10 and HHHz in Equation 17 and their visualizations in Figures 1b and 3 as distinct
examples of deformations in the same plane êee⊥z but with rotated eigenspaces.



4.3 Discussion
For linking Theorem 2 and Theorem 3 with the instantaneous theorems in Appendices A and B,
an invariant motion state (constant object velocity and material flux) is assumed. In this case,
Theorem 2 permits to integrate over a uniform displacement and Theorem 3 over a uniform de-
formation. In contrast to the non-symmetric matrix coefficients of displacements in Theorem 2,
the symmetric matrix coefficients of deformations in Theorem 3 are not linear but quadratic with
respect to the constituting vectors. In Table 1, the proposed analogy between finite displacements
and elementary deformations is summarized.

5 Conclusions
The three systems of commutative binary numbers have been taken as a starting point to study
the geometry of elementary deformations of elastic bodies in analogy to the geometry of linear
displacements of rigid bodies. The principle of transference, which appears in screw theory to
parametrize displacements in Euclidean space, has been converted into a novel conjecture suitable
to parametrize deformations with pseudo-Euclidean characteristics in a similar manner. For this
purpose, several sibling terms have been proposed. Pendants of the theorems by Mozzi–Chasles
and Euler–Rodrigues have been stated for flexible finite kinematics based on these concepts. For
the instantaneous domain, the duality of the spatial velocities (twists) and spatial force (wrenches)
in connection with serial and parallel mechanisms [32, 13] is established. With this paper, a
step towards a similar analogy for the finite domain of displacements and deformations has been
proposed. The restriction to elementary deformations – assuming incompressible, orientation-
preserving, linear, isotropic material and neglecting boundary conditions – permits to identify
shear and compression as two independent components comparable to the rotation-translation di-
chotomy of displacements. With this structural observation, the conducted analogy consideration
might contribute to ease the treatment of reconfigurations of compliant systems in the future.

A Instantaneous Domain
The term ‘forque’ is used as a placeholder for a ‘force’ or a ‘torque’ [14].

Theorem 4 (Instantaneous Mozzi–Chasles).
Any set of velocities applied in series equals a
twist about a unique axis.

Theorem 5 (Instantaneous Poinsot). Any set
of forques applied in parallel equals a wrench
about a unique axis.

B Hooke Law
For linear ‘one-dimensional’ springs, the deformation x is given by Hooke’s motion law x = 1

k · f
in terms of the spring’s flexibility 1

k and f , the applied force. For linear-elastic, isotropic, three-
dimensional bodies, the deformation EEE (finite strain εεε) is given by the law of Hooke, expressed
via the linear relation

EEE = εεε =
1+ν

E
·σσσ − ν

E
· trace(σσσ) · III , (23)

where σσσ indicates the applied force density (stress), ν the Poisson ratio, and E the Young modulus.

C Gell-Mann Matrices
Gell-Mann [15] has defined eight traceless (3× 3)-matrices connected with the (2× 2)-matrices
of Pauli. Among these eight, the three real symmetric matrices AAA1, AAA3, and AAA8

AAA1 =

0 1 0
1 0 0
0 0 0

 AAA3 =

1 0 0
0 −1 0
0 0 0

 AAA8 =
1√
3
·
1 0 0

0 1 0
0 0 −2


are associated to the coordinate axis êeez = (0,0,1)> and to the plane êee⊥z .
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