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ABSTRACT 

It is well known that vibrations usually appear during a roller coaster ride, which in 
some cases leads to passenger discomfort and poses additional material and structural 
strain. However, the causes of such vibrations are still not fully understood. While 
there have been technological advances that help to mitigate them to some degree, 
for instance by placing shock absorbers between the wheels and the bogie frame, an 
analysis of this phenomenon is required to make better decisions at the design stage. 
For the first time to the knowledge of the authors, in this investigation the problem is 
analyzed from the point of view of a self-excited dynamical system, thus ruling out 
trajectory deviations or local defects. A mechanical model is proposed, consisting in 
the separation of the overall spatial trajectory motion from the relative motions 
between train components and the representation of the wrenches at the end bodies 
of the kinematical chain using a simplified bogie-rail contact approach. Furthermore, 
the contact problem is extended with respect to previous works by considering the 
creep forces in the contact interface. Regions of increased oscillations are observed, 
indicating a possible self-excitation in real systems. 
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1 INTRODUCTION 

The simulation of roller coaster rides, often employing multibody dynamics formulations, is 
ubiquitous in the industry. During the layout design process, the track must be shaped and 
corrected based on different criteria, one of the most important being the passenger accelerations 
or g-loads. To this end, either simplistic models or complex multibody systems can be used. For 
example, a simple mass point moving along a spatial trajectory roughly yields the vehicle 
centripetal forces, whereas a more complete model regarding several rigid degrees of freedom 
can more accurately describe the individual passenger trajectories and even be used for collision 
analysis. The latter usually features a closed kinematical topology, which requires few parameters 
and can be solved notably fast. Nonetheless, this type of formulation can rarely capture the 
vibrational behavior of the real system. 

A simple extension to a perfectly rigid formulation is the lumped mass approach, as proposed in 
[1] for a quarter-carbody model subject to trajectory deviations modeled as a stationary Gaussian 
process. In [2], a two-wheel car system regarding a lumped mass model of the passengers is also 
proposed. Also, a complete roller coaster train of rigid bodies with a compliant contact model was 
studied in [3], using real rail trajectory deviation data. Nonetheless, a mismatch between the 
simulated spatial frequencies and the measurements was observed. These results are the main 
motivation for the present study, based on the hypothesis that self-excitation mechanisms may 
exist in roller coaster systems. 

Several self-excited systems have been extensively studied in the literature, such as the shimmy 
phenomenon [4-6] or the rocking motion of trailers [7-8]. A common method to determine the 
bifurcation parameters is to apply classical stability analysis to the linearized system, or the center 
manifold theory, provided that low-dimensional analytical dynamical models are available. In a 



roller coaster, the equilibrium points and the steady-state behavior become meaningless, given the 

rapidly changing configuration of the train along the trajectory. In the light of this, the time 

response will be analyzed instead. 

2 MECHANICAL SYSTEM 

2.1 IDEAL SYSTEM 

Let � be the number of cars of a roller coaster train, �CL(�) ∈ ℝ3, �LR(�) ∈ ℝ3 and �RR(�) ∈ ℝ3 

the arc-length parametrized spatial curves describing the track centerline (CL), left rail (LR) and 

right rail (RR), and �(�) = [�̂ �̂ �̂] ∈ ��(3) their corresponding rotation matrices, which 

constitute a curve frame, so that d�(�)/d� = �(̂�). Also, let � ∈ ℝ�(�) be the vector of generalized 

coordinates uniquely describing the configuration of the system, where �(�) indicates a 

dependence on the number of wagons and the type of mechanism. 

Various steering systems are currently used in roller coaster trains. Here, wheel bogies with 

independent kingpin will be considered (Figure 1), except for the front axle, rigidly attached to 

them. In Figure 1, �3 represents an arbitrary rotation parametrization of the spherical joints with 

3 coordinates, whereas �2 corresponds to the yaw and pitch angles of the wheel bogies. Moreover, 

the front axle has 5 mobilities with respect to the centerline transform at ��, 2 ( , ") corresponding 

to a movement on the plane with normal �ĈL and 3 (�3) corresponding to an equivalent ball joint. 

Figure 1. Example of a roller coaster train mechanism with two cars and a front axle. 

The ideal system is described as the single degree of freedom mechanism uniquely determined 

by the centerline coordinate �z that locates one reference body. In this case, the front axle is taken 

as reference, commonly termed zero-car. In view of this, the vector of generalized coordinates 

becomes � = [�z �d], where �d ∈ ℝ�(�)−1 is the vector of dependent generalized coordinates. 

Then, the dependent coordinates �d may be solved at fixed �z steps, resulting in the mappings 

'i
(0) = 'i

(0)(�z), for * = 2,… , �(�), where the superscript (0) refers to the ideal solution. In order 

to solve for �d, a system of augmented constraint equations .(�d, /c; �z) is built, where /c is a 

vector of centerline coordinates and/or rail coordinates that refer to the bodies closing the 

kinematical chain. The constraint equations of the front axle are  = " = 0 and �3 = 2. For an 

arbitrary car, the central point 34 between bogies is constrained along the centerline spline, so 

that 3c = �CL(�c), and the roll angle is blocked, which can be expressed as �̂CL5 (�c)�̂c = 0, 

where �̂c is the normal vector of the car. In this kind of mechanism, the line between two bogies 

is not necessarily perpendicular to the rails. In order to take it into consideration, the centerline 

coordinate �c may be corrected according to the relative angle between the car and centerline 

tangential directions �ĉ and �ĈL, getting �∗. Finally, the tangential direction of the bogies �b̂ is 

forced to guarantee �b̂5 �̂CL(�∗) = 0 and �b̂5 �̂CL(�∗) = 0. It is worth noting that the ideal system 

can be solved without the rail curves. 

The precomputed ideal trajectories 'i
(0)(�z) can be later used in the real system (Section 2.2) to 

initialize it at an arbitrary centerline location. Furthermore, the dynamics of the ideal system 

described here can be solved fast and will determine a reference centerline trajectory �z(8). For 



the vibration analysis of the real system, it will be convenient to compare the results for analogous 

positions and speeds along the track. For this purpose, the solution �z(8) can be used to force a 

motion along the track, correcting the variation in dissipated energy between the different 

analyzed scenarios. 

2.2 REAL SYSTEM 

The real system consists of an open kinematical chain, described by the same generalized 

coordinates � as the ideal system, plus one additional coordinate per wheel, representing the 

rolling motion, and one additional rail coordinate per bogie. 

The roller coaster train moves along the track due to the forces developing at each wheel-rail 

contact interface, for which the contact point must be calculated. Here, a simplified approach will 

be taken (Figure 2). The bogie rail coordinate �9, referenced to a virtual bogie point between all 

6 wheels, together with its relative orientation with respect to the rail tangent (�b̂ to �R̂), 

determines an approximate additional rail coordinate correction, locating a new rail coordinate 

for both the front (F) and rear (B) wheels of the same bogie, so that �b
(F) = �9 + <�b̂5 �R̂ and �b

(F) =
�9 − <�b̂5 �R̂. 

Figure 2. Front and rear rail coordinates based on �b. 

Once the rail coordinates are computed, a contact reference frame is determined to describe both 

the normal and tangential forces (Figure 3). The contact is assumed of the type cylinder-cylinder, 

and thus the normal direction is perpendicular to both of their axes (tangential direction of the rail 

�R̂ and rotating axis of the wheel =̂w), that is, �̂k = (�R̂ × =̂w)/∥�R̂ × =̂w∥. Finally, the wheel 

heading direction is simply given by B̂ = =̂w × �̂k. The contact point velocity Ck is decomposed 

into its heading and lateral components, respectively Dh and Ds, that are subsequently divided by 

the tangential speed ∥projK̂k{Cw}∥ to obtain the longitudinal and lateral creepages Ox and Oy. The 

same applies to the angular velocity component along �̂k, yielding the spin Oϕ. The component 

of Cw along �̂k yields the penetration speed S,̇ whilst the penetration depth S is the distance 

between the wheel rotation axis and the rail tangent minus their radii, respectively Vw and VR. 

Figure 3. Contact interface between a front running wheel and its respective rail axis. 



The contact response of the running wheels is mainly characterized by the direct contact of the 
PU thread with the rail. The following normal contact force model is assumed (see [9] for an 
extensive review), which takes into account the material damping occurring during a sustained 
contact for varying vertical g-loads: 

 WN = {([S� + \S�−1S)̇�̂k S > 0
2 S ≤ 0 ,  (1) 

where WN is the normal force, [ the stiffness coefficient and \ the damping coefficient. 

Conversely, the contact response of the lateral and upstop wheels is mainly determined by the 
shock absorber response. Given the lack of data on the viscoelastic behavior of these absorbers, 
the Kelvin-Voigt rheological model will be used: 

 WN = {([(S + S0) + \S)̇�̂k S + S0 > 0
2 S + S0 ≤ 0 , (2) 

where S0 is the initial compression of the viscoelastic absorber. 

Also, the creep forces are determined by means of Polach’s method [10], approximating the 
contact ellipse semiaxes in the heading and lateral directions. A rolling resistance torque is 
additionally applied by offsetting the normal force WN along the heading direction B̂. 

2.3 EXCITATION SCENARIOS 

In order to assess the vibrational behavior of the presented system, the following excitation 
scenarios can be considered: 

a) The train moves along the designed trajectory without any additional excitation. That 
corresponds to a soft excitation, and it is the case regarded in this paper. The rapid but 
smooth trajectory changes act as the main perturbation. 

b) The train moves along the designed trajectory, but it is perturbed at specified positions, 
either with impulses or bounded variations of the generalized coordinates. That could 
correspond to a hard excitation. After the perturbation, the train continues its movement 
along the designed track. Self-excited oscillations that are not observed in a) may arise 
and persist after a transient period. 

c) The train moves along a perturbed trajectory, that is, with additional trajectory deviations 
and local defects. This is the case of an external excitation. A coupling between self-
excited mechanisms and the forced perturbations may take place. 

Scenarios b) and c) are a subject of future research. In Section 3, the results of two simulations 
corresponding to case a) are presented. 

3 RESULTS 

The mechanical system of the roller coaster train described in Section 2 is simulated along a 
fictive track with a prescribed centerline motion �z(8). The track has been designed such that the 
chassis g-loads and speeds could be those of a real ride. Two different situations have been tested: 
without and with tangential contact forces. The g-loads of the chassis CM have been filtered with 
a high-pass filter to eliminate the low-frequency components corresponding to the ideal 
movement along a curve. Figure 4 shows the maximum value of the power spectral density (PSD) 
results per time, and Figure 5 per frequency. It can be observed that the tangential contact forces 
excite the system at some regions, thus indicating a possible self-excitation mechanism in real 
systems. Furthermore, the distinct responses among cars and with respect to time manifest the 
fact that both a complete train and a spatial trajectory must be taken into account when studying 
the vibrational response of a roller coaster. The peak at 8 = 0 in Figure 4 represents the fact that 
the system is initialized at an ideal configuration, as explained in Section 2.1, where the contact 
forces do not compensate the weight. 



 

Figure 4. Maximum PSD vs. time in lateral (y) and vertical (z) directions. Case without 

(left) and with (right) contact friction. 

 



Figure 5. Maximum PSD vs. frequency in lateral (y) and vertical (z) directions. Case without (left) and 

with (right) contact friction. 

 

 

 



4 CONCLUSIONS 

A mechanical model of a roller coaster train moving along spatial trajectories has been proposed, 
which takes into account the complete kinematics of a real steering mechanism and allows for a 
simple determination of the forces at each wheel-rail contact interface, with the novelty that the 
creep forces are also taken into account. It has been shown that without any additional 
perturbation, regions of increased oscillations arise at some track locations. The next step is to 
consider local hard excitations, to prove whether additional sustained self-excited regimes may 
emerge. 
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