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Physical Validation of Simulation Tools for Slender Elastic Structures
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ABSTRACT

This contribution validates different physics based software tools for the simulation
of large spatial deformations of slender flexible structures. The considered simulation
tools utilize discretized geometrically exact rod and shell models, with a considerable
range of model properties tuned to a wider spectrum of engineering applications. We
employ three benchmark tests on four simulation tools and compare the results with
semi-analytic solutions from literature: The bending of a cantilever under gravity,
the out of plane buckling of a predeformed beam due to coupling of bending and
twist, and the lateral buckling bifurcation of a shell which is clamped such that the
membrane width dimension corresponds to the direction of gravity. We examine both
the reliability of the software and its behavior in these test examples. We indicate
parameter ranges relevant for simulation of flexible round and flat cables, and we show
that the numerical models perform well in these ranges even for coarse diszretisations.

Keywords: Slender elastic structures, rod models, cable simulation, code validation,
computing methodologies.

1 INTRODUCTION
The increasing level of digitalization of industrial processes in design, functional performance
layout and virtual product realization requires reliable software tools. The development of dig-
ital twins requires physically sound models, as well as efficient numerical methods to compute
the behavior of elastic structures. The developers of such tools always have to compromise be-
tween physically accurate replication and fast, often real-time applicable approximations of real
effects. Romero et. al [1] recently proposed a framework consisting of four benchmark tests for
physical validation of simulation tools for slender elastic structures in computer graphics. These
benchmarks were specifically designed such that they may be experimentally verified in a reliable
manner. Adimensional scaling laws are used to robustly check the proper physical behavior of the
numerical model across a large range of geometrical and material parameter combinations.

We investigate the geometrically exact rod and shell models implemented in IPS (Industrial Paths
Solutions) [2], the CRod [3] and GeoXShell [4] models, and Odin [5] in three of the benchmark
tests. While Odin is a flexible multibody dynamics code that computes numerical solutions offline
with high accuracy, the other models are designed for a robust interactive usage of the simulation
software in digital validation applications, typically employed in early phases of product develop-
ment. We show that with appropriate tuning of numerical parameters, such as mesh density and
number of load steps, all simulations meet the expected results based on the master curves from
[1] – in particular for the geometric and material parameter ranges which are relevant to the ap-
plication field. In that spirit, we study the numerical behavior of the models behind the employed
software and the benchmarks and discuss the observed effects.



In section 2 we describe the beam and shell models implemented in the simulation codes of inter-
est. Furthermore, we give meaningful ranges for material and geometry parameters. Sections 3,
4, and 5 cover the three benchmark cases: cantilever, coupling of bending and twist, and lateral
buckling of shells, respectively. This includes a detailed description of the test procedure and the
discussion of numerical results, which we summarize in section 6.

2 MODELS AND SOFTWARE DESCRIPTION
Beam and shell models are popular frameworks to describe slender mechanical objects. In a digital
setting, their particular geometric features permit significant and necessary performance gains by
reduction of the number of degrees of freedom compared to full three-dimensional continuum
mechanics models. Still they capture the essential physical behavior, namely bending, torsion, and
stretching deformation modes. Due to their slenderness, such structures may undergo large spatial
displacements and/or rotations, while their strains remain small. Cosserat (or Simo-Reissner) and
Kirchhoff-Love models allow a kinematically exact treatment of these geometric nonlinearities
[6, 7, 8] and have found their way into numerous simulation tools which may be tailored to a
variety of different applications, such as the simulation of hair and cloth in computer graphics,
multibody system dynamics for structural mechanics, and interactive digital mock-up and VR.

The gravito-bending parameter: The main driving force of each test case is gravity. Depending
on the slenderness of the beam or shell structure and the material it is composed of, the object under
study will settle into a certain equilibrium shape. The situation can be summarized by one single
adimensional quantity that measures the relative importance of gravitational and bending effects.
It is given by

Γrod =
ρA◦gL3

EI
Γshell =

ρA□gL3

Dw
where we denote L the length, w the shell width, A the cross-section areas, I, the second moment
of area, ρ the density, E the Young’s modulus, D the flexural rigidity and g the acceleration of
gravity. We may interpret Γ as the ratio of the gravitational force ρALg to a bending moment EI

L2

applied to an object. The range of meaningful values in mechanical applications is [101,103] for
circular cables, bundles, and flat cables.

2.1 IPS Cable Simulation
IPS Cable Simulation is a software package that provides simulation capabilities for slender flex-
ible mechanical components such as beams, hoses and cables. These are enhanced by several
features useful for industrial applications which range from CAD to virtual assembly of cable sys-
tems. Users can interact in an intuitive fashion via grabbing the ends of a rod and moving it with
the mouse or changing the configuration of attached clips. The corresponding deformed states are
computed by solving a sequence of (quasi) static equilibria in real time by minimizing the elastic
energy. The flexible rod is based on Kirchhoff’s theory [8] and includes extensional deformation
modes. The continuum formulation is discretized by a geometric finite difference scheme [2] with
curve-angle kinematics closely related to the approach by Bergou et al. [9]. We will also make
use of the shell model implemented in IPS. It consists in a classical geometrically exact shell dis-
cretized by finite elements [10]. Unlike its beam counterpart, the discrete equilibrium of forces
and moments is solved instead of performing direct energy minimization.

2.2 CRod
The acronym CRod is a shorthand for "discrete Cosserat rod" internally used by its developers at
Fraunhofer ITWM and FCC. Its discrete kinematics are constructed such that geometric properties
are conserved after a finite difference discretization on a staggered grid by taking inspiration from
discrete differential geometry. The CRod model was first suggested in [11] in the context of



dynamic simulation of slender viscoelastic rods. Just as before, quasi-static equilibria are found
by directly minimizing the elastic energy. Some comparisons with semi analytic solutions have
already been made [3].

2.3 GeoXshell
GeoXshell is a shell model introduced by Roller et al. in [4] with the efficient and robust simulation
of flat cables in mind. The elastic energy from the shell continuum is discretized and applied
displacements enter the formulation as simple linear constraints. Hence, in the spirit of IPS Cable
Simulation and the CRod, quasi-static equilibria are obtained by sequentially solving a constrained
minimization problem. Roller et al. also show interesting performance gains with respect to
traditional finite element algorithms.

2.4 Odin
Odin is a research code for the simulation of nonsmooth flexible multibody systems, which uses
geometric methods for the description of motion, for the spatial discretization of flexible compo-
nents, and for the time integration. The code is able to deal with mechanical systems composed of
rigid and flexible bodies interconnected by kinematic joints and interacting through frictional con-
tact conditions. Finite motion variables are treated as elements of the Lie group SE(3). A detailed
description of the implemented beam model may be found in [12]. As opposed to IPS Cable Sim-
ulation, it is built as a FEM code aiming at a computational mechanics public. Its main specificity
is the fact that the translation and rotation variables are coupled in the kinematic description, and
the equilibrium equations are solved in the local frame of reference.

3 CANTILEVER BENDING
The first benchmark is valid for testing both rod and shell models, meaning structures that are thin
in two or one direction, respectively. The cantilever test, first studied in detail by Bickley [13],
is a standard method for obtaining elastic material parameters in soft matter physics. It is also
meaningful for validation of physics-based simulators [1].

3.1 Benchmark Description
Figure 1 illustrates the basic setup of the cantilever test. We clamp the object of interest at one
end and leave the other end free in a horizontal natural configuration. This means if choosing the
negative y-axis as direction of gravity, the rod centerline is aligned with the x-axis and the shell
mid-surface lies in the xz-plane. Under the influence of gravity, the specimen bends downwards.
The amount of bending is portrayed by the total coordinate ratio ∆y

∆x measured between the end
points in deformed state. This ratio depends on the gravito-bending parameter Γ.

3.2 Simulation Results
A logarithmic plot of gravito-bending against the coordinate ratio is given in Fig. 2, where the
simulations align well with the semi-analytic master curve from [1]. In this section we use the
measured material parameters of a representative cable bundle Ωbundle from Table 1, where Γ ≈
61.3 corresponds to gravity on earth.

We observe some characteristic deviations from the master curve for both small and large values
of Γ. The former consist in plateaus and arise for the IPS simulation only. They are due to very
small forces that fall below the tolerance of the numerical solver. For the implemented values the
solver does not even start computing a new equilibrium. In IPS this parameter is hidden from the
user and cannot be modified. The research codes Odin and CRod allow a finer tuning of numerical
parameters. Nevertheless, similar behavior may be induced by choosing corresponding tolerance
values.



Figure 1: Exem-
plary illustration
of the cantilever
benchmark.

Figure 2: Simulation results of cantilever benchmark with material and
geometry Ωmeasured (rods, Table 1) and Ωcombined (shells, Table 2). The
lines corresponding to different simulations align along the orange master
curve, where the numbers in the legend indicate the number of elements in
the discretization. The orange region highlights the range Γ ∈ [101,103].

Identifier L [m] d [mm] ν [ ] ρ [ kg
dm3 ] EI [Nm2] GJ [Nm2] EA [N]

Ωrod 1.0 0.5 0.3 1273 1 0.77 1.6e7
Ωbundle 1.0 6.0 0.2 2485 4.5e-2 3.75e-2 9.21e5

Table 1: Material and geometry parameters for rods in this paper. The lines correspond to the
parameters proposed in [1], and a measured cable bundle. Basic and effective stiffness properties
of Γbundle do not satisfy the constitutional equations of isotropic materials, as cables behave highly
anisotropic (cf. [14]).

The deviations for large Γ occur since the underlying discretization is not fine enough to resolve
the high curvature present in the exact solution in proximity of the clamp. Still, this issue generates
different effects for the different simulation codes. Figure 3 illustrates the resulting equilibrium
state for Γ = 104 in IPS with minimum accuracy level. In this case, the incapability to capture the
correct curvature leads to elements pointing in negative x-direction such that the coordinate ratio
grows away from the master curve. This behaviour strongly influences the flexible flat cable, as
shown by Figure 4.

In Fig. 5 we observe a deviation from the master curve of a different nature when applying a
discretization of five elements in Odin. In this case the simulated coordinate ratio falls below the
master curve for large values of Γ. Here, the coarse discretization induces an artificial stiffness in
proximity of the clamp, resulting in a curvature lower than in the exact solution.

The issues for large Γ both vanish when increasing the number of elements. The more elegant
solution would be a local refinement procedure to avoid the loss of numerical performance.

Notably, overestimation of the coordinate ratios also arises from stretching of specimens made of
a material with low tensile stiffness, for example rubber. However, these cases fall under misuse of
cable simulation as a significant elongation of more than 1% would severely damage the conductor.
As suggested in [1], we made sure to chose parameters such that this effect is negligible in all the
computations shown in this section.

4 BEND-TWIST BIFURCATION
Numerical simulation of the bend-twist coupling of rods is a challenging task. We verify the ability
of the different simulation tools to capture this effect in the present benchmark. It consists of a
precurved rod possibly experiencing twist under the effect of gravity.



Identifier L [m] h [mm] E [MPa] ν [ ] ρ [ kg
dm3 ]

Ωshell 1.0 1.0 10530 0.35 1000
ΩIPS 0.1 0.2 2380 0.36 1210
Ωcombined 0.1 0.2 10530 0.35 1000

Table 2: Material and geometry parameters for shells in this paper. The lines correspond to the
parameters proposed in [1], the default values in IPS, and a combination of both.

Figure 3: Char-
acteristic misrep-
resentation of the
curvature close
to clamp for an
IPS simulation at
lowest accuracy.

Figure 4: Cantilever simulation
with an IPS shell using fifteen el-
ements for the discretization and
the material and geometry param-
eters ΩIPS.

Figure 5: Cantilever simulation in
Odin using five elements for the
discretization and the material and
geometry parameters Ωrod .

4.1 Benchmark Description
In its natural stress free state the rod has a circular shape of bending radius R. It is described by
the curve

r◦ : [0,L]→ R3, s 7→ R
[
−sin( s

R) 0 −cos( s
R)
]T

. (1)

We allow for L > 2πR even though self-contact inhibits a real cable to attain this configuration.
Based on equation (1) the rod lies in the xz-plane initially and the tangent at s= 0 points in negative
z-direction, which we choose to be the direction of gravity.

With gravity activated, there is a two-dimensional equilibrium occurring by plane bending of the
rod. Depending on the magnitude of gravity, as well as material and geometry parameters of the
rod, this configuration is stable or not. In the latter case, a small perturbation of the system (as
they naturally occur in reality) leads to the rod buckling out to a three-dimensional helical shape
as shown in Fig. 6.

Romero et al. [1] suggest to slightly perturb the zero-components of the curvature vector in the ini-
tial state in order to introduce disturbances. As the softwares at hand consider beam models with
positions as primary variables, such a perturbation would involve numerical integration for com-
puting the initial state. Out of simplicity, we apply a gravitational acceleration in y-direction with
magnitude |g|

100 instead, before switching on the actual gravity g. After resetting the perturbation
gravity in y-direction to zero, we may consider the resulting state.

For deciding whether a configuration is three-dimensional or not, we compare different measures.
For each, we choose a specific density ξ , integrate it along the rod as

Ξ1[ξ ] =
∫ L

0
|ξ |ds

and check if the result is greater than a prescribed threshold ε . The measures of interest are the
y-coordinates of arc-length positions ξy(s) := r(s) · ey, and the Frenet torsion ξτ(s) := τ(s) of the



Figure 6: Exemplary illus-
tration of the bend-twist
benchmark.

Figure 7: Integrated y−deviation of the equilibria in the
bend-twist benchmark in Odin. Ground truth determined by
the master curve displayed as red wall.

rod centre line. Latter is a classical measure to check if a curve is plane or spatial (cf. [15, sec.
1.5]). For the IPS simulations we observe that the (discretely approximated) Frenet torsion behaves
equivalently to the rod twist suggested as a measure by [1].

Relevant parameters: For this benchmark we vary the parameters X = R
L

3
√

Γ and Y = ϕ

2π
=

L
2πR . When coiling a cable and keeping it in this spiral shape, plasticity effects lead to natural
configurations close to (1) with L > 2πR. Thus the parameter range Y > 1 is highly relevant for
practical applications. Realistic Γ values for this use case lie in [102,103]. The corresponding X -
values are [4,10]/ϕ = [2,5]/π/Y and depend on Y . Thus, the interesting parameters for cable
simulation lie in a corridor around X Y = 1, which is a straight line in the logarithmic phase
diagram connecting (10,1) and (1,0.1).

4.2 Simulation Results
The results illustrated in this section have been produced by Odin, but are also representative of
simulations by IPS Cable Simulation and the Crod model. We use the parameter set Ωrod and an
adaptive discretization of 100× y.

Figure 7 displays Ξ1[ξy] for varying simulation parameters X ,Y and reveals strengths and weak-
nesses of this measure. While the large gradients close to the master curve for Y < 5 capture the
ground truth really well, the upper right quadrant cannot be distinguished from numerical noise by
simple thresholding.

In this sense, using the criterion based on torsion gives a much cleaner height map as depicted in
Fig. 8a. Still, numerical noise in the position data almost always produces finite values for Ξ1[ξτ ].
Therefore, the threshold yielding the phase plot 8b has to be of magnitude 1 in practice. As a
consequence, we believe a height map plotting Ξ1[ξτ ] in function of X and Y is a more illus-
trative and at the same time transparent representation of simulation results. Notably, a sensible
combination of Ξ1[ξτ ] and Ξ1[ξy] yields the best results, using the advantages of the single criteria
to balance out the weakness of the respective other.

In summary, the bend-twist benchmark is quite challenging from a numerical point of view. First,
setting up the circular reference configuration for large values of Y requires a fine discretization



(a) Integrated torsion of the equilibria in a
height map. Ground truth determined by the
master curve displayed as red wall.

(b) Bend-Twist phase diagram with ground
truth in the background and simulations as di-
amond shapes. Green and orange represent 3D
and 2D states, respectively.

Figure 8: Overview of the bend-twist benchmark computed in Odin with 100× y elements and
Ωrod . Single simulations vary in the aspect ratio L

R and the gravity-bending parameter R
L

3
√

Γrod .

unless the element basis functions are tailored to such geometries. Second, disturbing the refer-
ence configuration by curvature components is not practical for every software tool. Third, the
distinction between 2D and 3D depends on several factors: noise in position/torsion data, numeri-
cal issues from integration, discrete computation of the torsion and the choice of an ε-threshold.

5 LATERAL BUCKLING
A bifurcation behavior is observable for shells, as well, when employing the cantilever experiment
from section 3 with the gravity directed in the width dimension of the object. In this setup, the
membrane stresses prevent sagging of the free end and either lead to a planar equilibrium or a
lateral buckling depending on the magnitude of present forces.

5.1 Benchmark Description
Just as in section 3, we clamp a shell such that its length and width dimensions align with x- and
z-axes, respectively. This time, the gravity points in negative z-direction. As in section 4, the
planar (in this case natural) state is an equilibrium between gravity and the elastic stiffness of the
structure. Material and geometry data decide whether such a solution is stable or not.

We vary the gravito-bending parameter Γshell and the aspect ratio of width to length w
L by tuning

gravity and shell width, respectively. Then a lateral buckling occurs if and only if the centre of the
free end has a nonzero y-coordinate.

Analogously to section 4, we require some perturbation in order to observe the bifurcation behav-
ior. For this, we closely follow the manual of [1] and rotate the fixed boundary condition about
the x-axis with a magnitude of σ . After this perturbation, we increase the gravity to its maximal
value, before removing the perturbation by rotation again.

5.2 Simulation Results
First, we utilize the default material and geometry parameters in IPS ΩIPS as given in Table 2. We
realize both perturbation (σ = 0.2) and activation of the gravity in five steps leading to smaller
changes to resolve for the numerical solver.

Figure 10 displays the simulation results for a flexible flat cable in IPS discretized by nL = 30
elements in the length dimension, where the resolution of the width dimension is chosen such
that each element is quadratic. In the same spirit as for the bend-twist benchmark, we illustrate
the decision criterion in a height map (Fig. 9a) before thresholding with an ε = 10−4. The red



Figure 9: Exemplary
illustration of the lat-
eral buckling bench-
mark.

(a) Height map of the y-deviation
of the end point. The ground
truth is displayed as red wall in-
dicating where the steep descent
in the solution is expected.

(b) Decision plot with ground
truth in background and simula-
tions as diamond shapes. Green
and orange represent 3D and 2D
states, respectively.

Figure 10: Overview of the lateral buckling benchmark computed
for the IPS flat cable (shell) with 30 elements in length direction and
ΩIPS. Single simulations vary in the aspect ratio w

L and the gravity-
bending parameter Γshell .

(a) Height map of the y-deviation of the
end point. The ground truth is displayed
as red wall indicating where the steep de-
scent in the solution is expected.

(b) Decision plot with ground truth in
background and simulations as diamond
shapes. Green and orange represent 3D and
2D states, respectively.

Figure 11: Overview of the lateral buckling benchmark computed for the GeoXShell with 30
elements in length direction. Single simulations vary in the aspect ratio w

L and the gravity-bending
parameter Γshell .

wall representing the master curve matches the steep descent, which corresponds to the lateral
buckling, quite well for all simulations with w < L. In the case when we deal with a quadratic
plate, the solver is not able to maintain the lateral buckling after reverting the perturbation, such
that we always end up with a planar state.

We observe in Figure 11 that the GeoXShell does not struggle with L = w at all, but masters
the lateral buckling benchmark as depicted in Figure 11b using a mesh of medium fineness. As
depicted by Figure 11a, the height map exhibits a significant descent around the master curve.
Thus, locating this steep areas is a valid alternative to application of a threshold in the case of
lateral buckling. Remarkably, the GeoXShell model already performs very well with a coarse
discretization using eight elements in length dimension only.

5.3 Experiment Sensitivity
The lateral buckling experiment depends on a large number design parameters. Since the test case
is dimensionless, we may vary the material parameters Ω just as we did for the other benchmarks.
Furthermore, we can modify the mesh size, the number of load steps mls, and also verify the



(a) Varying discretization (b) Varying perturbation angle (c) Varying material parameters

Figure 12: Boxplots illustrating the sensitivity of the lateral buckling test in IPS with respect
to different design parameters. The y-axis shows the percentage of correct decisions 2D-vs-3D,
neglecting L = w.

influence of the perturbation angle σ .

We carry out the simulation in IPS for all possible combinations of the following parameter sets

Ω ∈ {Ωshell,Ωcombined ,ΩIPS}, nL ∈ {8,15,20,30,45,60},
mls ∈ {1,3,5}, σ ∈ {0.1,0.2,0.3,0.4}

and compare the results. For every combination we capture the rate of correctly recognized 2D-
and 3D-configurations, but exclude the cases of L = w.

Figure 12 displays the results in the form of boxplots grouping the simulations by one common
design parameter. As expected, there is a direct relation between mesh size and solution quality.
Whereas the average test with a coarse discretization nL = 8 does only capture 70% of the states
correctly, simulations with a discretization nL = 30 succeed in at least 90% of all cases. Further
convergence follows for even finder meshes. Notably, IPS is able to capture the case L = w with
coarse discretizations quantitatively well, whereas fine discretizations always fail.

While there is no notable difference in the solutions with different number of load steps, the sug-
gested perturbation angle σ = 0.2 yields slightly better results than other values.

Surprisingly, the material model has the most significant impact. The material suggested in [1]
combined with the default geometry in IPS performs significantly better than the other parameter
sets under consideration.

6 CONCLUSION
As hoped for by the authors of [1], we followed the validation protocols therein to assess the
physical realism of different simulation tools. These included the commercial software IPS and
three research codes, each based on different formulations and numerical algorithms and aimed at
a different audience. The main conclusions of this paper are summarized as follows:

• All codes are based on proper physical models and hence, provided a sufficiently fine dis-
cretization and appropriate tuning of numerical parameters, always yield satisfying results.

• In the range of meaningful Γ for mechanical applications, all codes perform very well with
moderate and coarse discretizations.

• Even though all the material and geometric parameter combinations we used throughout the
paper are equivalent from an analytic standpoint, they are not in practice. Indeed, these have
an influence on performance and accuracy due to changing matrix conditioning and the need
to adapt solver tolerances.

Furthermore, this paper contributes to the research literature by a detailed inspection of differ-
ent benchmarks with a focus on their numerical aspects and including a discussion of relevant
parameter ranges.
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