
ECCOMAS Thematic Conference on Multibody Dynamics
July 24 - 28, 2023, Lisbon, Portugal

Closed-form method for the inertia-weighted input matrix utilizing
O(n) forward dynamics

G. Krög1, H. Gattringer1, A. Müller1

1 Institute of Robotics
Johannes Kepler University Linz

Altenberger Straße 69, 4040 Linz, Austria
[gabriel.kroeg, hubert.gattringer, a.mueller]@jku.at

ABSTRACT

This paper presents a closed-form method to evaluate the inertia-weighted input ma-
trix, which is the map between inputs and system accelerations, using intermediate
results from an O(n) method, the Implicit Inversion Method (IIM). This matrix can
be used to greatly reduce the calculation times for optimal control problems which
include the Equations of Motion (EoM), as the relationship between inputs and accel-
erations is fixed for a certain time step and can therefore be evaluated a priori. That
means that the EoM only need to be solved once for the whole problem instead of hav-
ing to solve the equations in every iteration of the optimization. The method presented
in this paper especially targets the case that the system dynamics are implemented us-
ing an O(n) method and takes advantage of that by reusing variables that occurred in
the evaluation of that method. Using these quantities, it is possible to calculate the
inertia-weighted input matrix without having to convert the system to minimal form.
Utilizing the shape of the resulting equation, it is even possible to avoid having to
explicitly invert any matrices.

Keywords: dynamics, recursive dynamics algorithms, robotics, numerical methods,
optimal control.

1 INTRODUCTION
In operational-space control like [1], the dynamics of the robot is often incorporated as constraints
like

min
q̈,u

1
2

∥∥Jt q̈+ J̇t q̇− V̇t,c
∥∥2

s.t. M(q)q̈+h(q, q̇) = B(q)u,
(1)

to ensure that the commanded behavior is physically feasible. In this kind of optimization problem,
both the accelerations q̈ and inputs u, which can contain both actuation torques and interaction
forces here, are used as optimization variables. Since the relationship between these is given
through the Equations of Motion (EoM) of the robot, they have to be solved for the accelerations
in every iteration of the optimization to make sure that the result remains dynamically consistent.
Because of this, the inclusion of system dynamics is a very costly feature as the system mass
matrix M needs to be inverted every time. To mitigate this, the system dynamics can be evaluated
before starting the optimization, eliminating the system accelerations from the problem as they
linearly depend on the inputs like in [2] or [3]. This results in problems like

min
u

1
2

∥∥JtM−1Bu−JtM−1h+ J̇t q̇− V̇t,c
∥∥2

, (2)

where the EoM only needs to be solved once for every time step, since except for the optimization
variables u, all other occurring quantities only depend on desired values or the current state. With
this, they can be considered as constant since this optimization has to be evaluated for every time

step separately. This means that the system dynamics now only need to be evaluated once per
optimization instead of the hundreds if not thousands of times that would be necessary otherwise,
depending on how many iterations are needed.

For multi-body systems with many degrees of freedom (DOF), efficient methods to solve the EoM
like the various existing recursive dynamics algorithms, such as the Articulated-Body Algorithm
(ABA) by Featherstone [4] or a similar O(n)-method by Bremer [5], which is used in this work,
show their advantages in terms of computational time. Since the standard form of these methods is
unable to produce mentioned decoupling of the acceleration terms however, the inertia-weighted
input matrix (IWIM) B̂=M−1B, which is the linear map between the desired system inputs and the
task accelerations, as can be seen in (2), has to be derived separately. Previous work on a similar
topic was done in [6] and [7], which are based on methods from [8], where different derivations of
the inverse operational-space inertia matrix (OSIM) was shown. These approaches however, treat
the contact forces separately from motor torques, as in these cases, the inertia matrix of one or
more specific manipulators is the topic of interest. This paper presents an algorithm which enables
the calculation of the IWIM for systems with chain or tree topology using intermediate results
obtained by solving an O(n) method, called the Implicit Inversion Method (IIM) here.

In section 2, a brief overview of the task-space optimal control problem is given as a motivation
for this new formulation. Section 3 then covers the method used to obtain the dynamic model
and the O(n) algorithm that is used here to solve the EoM, showing the problems that arise from
using this method. A short overview of the two mentioned existing methods is given in section 4
and the main contribution of this work, the IIM, is then presented in section 5. Building on this,
simulation results of several models and runtime comparisons are shown in section 6. Finally,
section 7 concludes this paper.

2 TASK CONTROL OPTIMIZATION PROBLEM
A generic optimization problem for task control in operational-space as shown in [3] is written
as (1) with the task Jacobian Jt giving the relationship between a task twist Vt and the minimal
velocities q̇, Vt = Jt q̇. The commanded time derivative of the task twist V̇t,c contains all the
necessary information about the desired task trajectory. To ensure that the resulting output is
physically feasible, the EoM are considered in the constraints, which is computationally very
expensive if both accelerations and inputs are used as optimization variables, as mentioned above.
A more efficient approach is to compute

q̈ =−M−1h+M−1Bu (3)

before solving (1), as shown in(2). That way, the system accelerations q̈ can be split up into the
components

q̈ = q̈0 + q̈u, (4)

the free acceleration q̈0 =−M−1h that only depends on the current system state and the accelera-
tions caused by the inputs, q̈u, which depend linearly on u through the IWIM, so q̈u = B̂u. For the
derivative of the task twist, this means

V̇t = Jt q̈+ J̇t q̇ = Jt(q̈u + q̈0)+ J̇t q̇ = JtB̂u+ V̇t,0, (5)

where V̇t,0 = Jt q̈0+ J̇t q̇ are the free task accelerations that result from the system behavior without
inputs. The matrix JtB̂ is the map from the system inputs to the operational-space accelerations,
which is a generalization of the cross-coupling inverse OSIM from [3]. Due to this separation, the
nonlinear constraint that is the EoM can be directly incorporated into the cost function (2) which
speeds up the optimization considerably, as the result is an unconstrained quadratic problem and
the set of optimization variables is smaller.

Still, q̈0 needs to be evaluated, which leads to the question what approach should be used to solve
the system dynamics.

3 O(n) FORWARD DYNAMICS ALGORITHM
To efficiently handle the EoM of more complex systems, recursive dynamics algorithms have
proven to be the method of choice, as some of them are computationally very efficient. The one
described in the following is the O(n)-method presented in [5], which is closely related to the ABA
described in [4].

3.1 Subsystem Formulation
The Subsystem formulation is a modeling approach where the complete system is regarded as
an assembly of smaller subsystems which are attached to one another in certain coupling points,
usually the joints that connect them. These subsystems are derived separately and can then be
assembled as seen in

∑
i

(
∂ ẏi

∂ q̇

)⊤
(Miÿi +hi(ẏi,q,ui)) = 0 (6)

and then solves the dynamics recursively on the subsystem level, thus avoiding large matrix di-
mensions. This modeling approach offers great flexibility as additional components can be added
without having to change the preexisting subsystems.

The matrix Mi is the corresponding mass matrix and hi the dynamics vector of the subsystem i,
which also includes the effects of the input ui here. The variables ẏi respectively ÿi are a set of
velocities/accelerations, through which the full dynamics of subsystem i can be described. These
velocities

ẏi =
(
v⊤o,i ωωω⊤

o,i q̇⊤
i
)⊤

(7)

consist of the coupling point velocity vo,i, the angular velocity of the subsystem frame i, ωωωo,i and
the internal velocities of the subsystem, q̇i as can be seen in fig. 1.

q̇pωωωo,p

vo,p

vo,i
q̇i

ωωωo,ilink p

link i

Figure 1. Visualization of the elements of ẏi

The consecutive ẏi can be calculated recursively as

ẏi = Tip ẏp +Fi q̇i, (8)

with the index p indicating the parent subsystem of i, the velocity propagation matrix Tip from p
to i and Fi the matrix that incorporates the free motion of the subsystem i into ẏi. This leads to the
global relationship

ẏ1
ẏ2
...

ẏN

=

F1 0 · · · 0

T21F1 F2 · · · 0
...

...
. . .

...
TN1F1 TN2F2 · · · FN

q̇1
q̇2
...

q̇N

= Fq̇ (9)

between the set of all velocities ẏi and the minimal system velocities q̇, which is a lower triangular
block matrix. This property of F will be exploited later on in the IIM.

3.2 The O(n) algorithm
The solution of the system dynamics as shown in (1) has a computational complexity of O(n3) due
to the necessary inversion of the mass matrix and the dimensions of the system matrices. One way
to mitigate these problems is to split the system into a number of smaller components which are
then used to calculate the system dynamics. Using this principle, a number of recursive algorithms,
like [5] or [4] have been developed which can reduce the computational complexity to O(n). They
do require increased overhead however, which is why they only evaluate faster than the minimal
form from n ≈ 9 on.

The O(n)-method introduced by Bremer in [5] consists of three recursions. In the first one, the
kinematics is evaluated from the base subsystem outwards as can be seen in (8). Then, in the
following inward recursion, the articulated-body inertia M∗

i and bias forces h∗
i , as they are named

in the ABA, are computed as

M∗
p = Mp + ∑

i∈{s j(p)}
T∗⊤

ip M∗
i Tip h∗

p = hp + ∑
i∈{s j(p)}

T∗⊤
ip

(
M∗

i Ṫipẏp +h∗
i
)
, (10)

with T∗
ip = (I−M∗

i FiM−1
Ri F⊤

i)
⊤Tip and MRi = F⊤

i M∗
i Fi. (11)

The set {s j(p)} denotes all subsystems that have p as its parent. Finally, the system accelerations
are obtained through the final outwards recursion

q̈i =−M−1
Ri F⊤

i
[
M∗

i (Tipÿp + Ṫipẏp)+h∗
i
]

with ÿi = Tipÿp + Ṫipẏp +Fiq̈i + Ḟiq̇i. (12)

The problem here is that this method gives just the resulting accelerations without the possibility of
splitting it up the way it was done in (4). Therefore, an additional method is required to calculate
the IWIM.

4 EXTENSION FROM OPERATIONAL-SPACE INERTIA MATRIX TO
INERTIA-WEIGHTED INPUT MATRIX

The two methods mentioned in the introduction were developed for the calculation of the in-
verse OSIM ΛΛΛ−1 = J⊤t M−1Jt , which defines the dynamic behavior of a robot manipulator re-
garding forces acting on the end effector and is a subset of the IWIM in task coordinates, JtB̂ =[
JtM−1J⊤a ΛΛΛ−1]. Therefore, the OSIM can only take into account the contact forces at the re-

spective manipulators and not actuator torques.

By splitting the input u up into motor torques τττ and contact forces Fc, the input matrix B also has
to be separated into B =

(
J⊤a J⊤t

)
, with the actuation jacobian J⊤a and the task jacobian which

was introduced earlier. Inserting this relationship and the accelerations from (1) into (5) gives the
manipulator accelerations

V̇t = JtM−1
(

J⊤t Fc +J⊤a τττ

)
+ V̇t,0 = ΛΛΛ−1Fc +JtM−1J⊤a τττ + V̇t,0. (13)

The methods explained in the following are assuming the term JtM−1J⊤a τττ +V̇t,0 is already known,
as mentioned in [9], section 2.5.4. This can be done through the O(n)-method for example.

The question now is, whether these methods can be adapted to return JtB̂ without knowledge of
M, using the subsystem quantities Mi and hi.

Extended-Force-Propagator Algorithm (EFPA) The EFPA by Wensing et al. [7] is an ex-
tension of the Force Propagation method from [8] and is a recursive algorithm. While it is very
efficient at calculating ΛΛΛ−1, it is noticeably harder to extend its functionality to the calculation of
JtM−1J⊤a since the desired input is the global input u for each recursive step and not the specific
input of a certain subsystem ui. Therefore, this algorithm is not applicable for this paper.

Extended Unit Force Method (eUFM) Another way of calculating the inverse OSIM is shown
in [6]. It is based on the Unit Force Method of [8], but generalized in the sense that it does not rely
on assumptions to simplify the system dynamics. Because of this, it will be called the extended
Unit Force Method later on.

To get the inverse OSIM ΛΛΛ−1 = JtM−1J⊤t , the matrix M−1J⊤t is calculated first, since this term
directly results from the EoM

q̈ =−M−1
(

h(q, q̇)−J⊤a τττ

)
+M−1J⊤t Fc, (14)

which can also be written as q̈= q̈[0]+M−1J⊤t Fc, where q̈[0] are the system accelerations according
to the current state and actuator torques, which are calculated using the O(n)-method.

The matrix M−1J⊤t can then be calculated column-wise by choosing the force input as a unit vector
ei whose i-th entry is 1. When solving for the accelerations now, the result is

q̈[i] = q̈[0]+M−1J⊤t ei, (15)

which means that the difference q̈[i]− q̈[0] equates to the i-th column of M−1J⊤t . Therefore, by
repeating this process for each entry of the contact force vector, the entire matrix is obtained. To
get the OSIM now, this result only needs to be multiplied by Jt .

While this method is less efficient at calculating the OSIM than the EFPA, it uses a global input
vector. Through this, the input can be chosen as u =

(
τττ⊤ F⊤

c
)⊤, which means that the dynamics

can now be rewritten to (3) with B =
[
J⊤a J⊤t

]
. For this case, the eUFM now returns B̂ instead of

M−1J⊤t .

The main problem of this method is that the O(n)-algorithm has to be evaluated m+ 1 times, for
u ∈ Rm, resulting in a computational complexity of O(mn). This makes the method impracticable
for greater numbers of inputs as the computation times rise linearly with the number of inputs
additionally to the DOF.

5 IMPLICIT INVERSION METHOD FOR COMPUTING THE INERTIA-WEIGHTED
INPUT MATRIX

Since most systems typically have a number of inputs that is close to if not higher than their DOF,
especially when including contact forces, it is worthwhile to think about more efficient methods to
solve this problem.

To get a linear relation between inputs and system accelerations, it is assumed that the subsystem
dynamics vectors hi from (6) are linear in the corresponding subsystem inputs ui, thus enabling a
split into hi = hi,0 +hi,u with hi,u =−Biui. Looking at the propagation formula for the bias forces
in (10), the same kind of split can be introduced here

h∗
p = h∗

p,0 +h∗
p,u

with h∗
p,u = hp,u + ∑

i∈{s j(p)}
T∗⊤

ip h∗
i,u =−Bpup + ∑

i∈{s j(p)}
T∗⊤

ip h∗
i,u

(16)

From this, a global form h∗
u =

(
h∗

1,u
⊤ · · · h∗

N,u
⊤
)⊤

= −B∗u with u as the entire system input
can then be derived as

B∗ =

I T∗⊤

21 · · · T∗⊤
N1

0 I · · · T∗⊤
N2

...
...

. . .
...

0 0 · · · I

diag(Bi), (17)

where the matrices T∗
ip propagate as T∗

ac = T∗
abT∗

bc.

A similar separation can be done with the system accelerations.

When looking at ÿi =
∂ ẏi
∂ q̇ q̈+ d

d t

(
∂ ẏi
∂ q̇

)
q̇ and inserting (4), one gets ÿi = ÿi,0 +

(
∂ ẏi
∂ q̇

)
q̈u, which can

be used to rewrite (12) to q̈i = q̈i,0 − q̈i,u with

q̈i,u =−M−1
Ri F⊤

i

[
M∗

i Tip

(
∂ ẏp

∂ q̇

)
q̈u +h∗

i,u

]
. (18)

Extending the resulting formula for q̈i,u to all system accelerations, one gets

q̈u =−diag(M−1
Ri F⊤

i M∗
i)(F−diag(Fi))q̈u −diag(M−1

Ri F⊤
i)h

∗
i,u. (19)

which can be simplified to[
I+diag(M−1

Ri F⊤
i M∗

i)(F−diag(Fi))
]

q̈u = diag(M−1
Ri F⊤

i)B
∗u. (20)

With (11), the expression I−diag(M−1
Ri F⊤

i M∗
i Fi) vanishes, leaving

q̈u =
[
diag(M−1

Ri F⊤
i M∗

i)F
]−1

diag(M−1
Ri F⊤

i)B
∗u = ΓΓΓ−1diag(M−1

Ri F⊤
i)B

∗u (21)

The matrix ΓΓΓ inherits its structure from F, i.e. it is a lower triangular block matrix. Moreover,
thanks to M−1

Ri F⊤
i M∗

i Fi = I, all the block matrices on the diagonal of ΓΓΓ are identity matrices,
leading to a lower unitriangular structure, i.e. a lower triangular matrix with only ones as its
diagonal entries. This guarantees that ΓΓΓ will always be invertible.

Using this special structure, the matrix inversion can be done through the cascaded inversion of
submatrices of ΓΓΓ. Following [10], the inverse of matrices of the shape

Ai =

(
Ap 0
Ci I

)
(22)

is

A−1
i =

(
A−1

p 0
−CiA−1

p I

)
, (23)

as long as the diagonal block matrices are quadratic, which can be guaranteed in this case. Starting
with the upper left submatrix A1 = I and then gradually expanding, until AN = ΓΓΓ. This way, the
inverse can be obtained without any explicit matrix inversion, which motivates to call this approach
the IIM.

The resulting matrix can then be simplified to

ΓΓΓ−1 = I−diag(M−1
Ri F⊤

i M∗
i Tip)T̂diag(Fi). (24)

The matrix T̂ can be derived as

T̂ = [ti j]i, j=1..N with ti j =

I j = p(i)
T∗

p(i), j j ∈ P(i)\ p(i)
0 otherwise

(25)

where p(i) denotes the predecessor of i and P(i) the set of all subsystems preceding i according
to the system topology.

For the system accelerations due to inputs, this gives

q̈u = diag(M−1
Ri F⊤

i)[I−diag(M∗
i Tip)T̂diag(FiM−1

Ri F⊤
i)]B

∗u (26)

As can be seen from this formula, the only inverses remaining are those of MRi, which were already
calculated during the execution of the O(n)-method.

This yields the final result q̈= q̈0+ B̂u with q̈0 obtained by running the O(n)-method once without
any inputs. Through that, all variables that are necessary to calculate the global matrices T̂,B∗ and
subsequently B̂ are computed in advance. Finally, the IWIM B̂ is obtained as

B̂ = diag(M−1
Ri F⊤

i)[I−diag(M∗
i Tip)T̂diag(FiM−1

Ri F⊤
i)]B

∗. (27)

6 SIMULATION RESULTS
To get a better understanding of the performance of this new method, it is used to simulate different
models with an increasing number of degrees of freedom. The runtime is then compared against
the solution of the eUFM which was explained in section 4 and the O(n)-method as explained in
section 3.2 for reference. The latter is only there as a baseline for the runtime, since as mentioned,
this method is unable to explicitly calculate the IWIM.

All algorithms are implemented in Matlab and the runtime is calculated as the average time it takes
to evaluate the accelerations of a model 100 times with randomized values for the initial states and
inputs for each run.

6.1 Simulation: n-link Chain
The model is a n-Link pendulum with n ranging from 1 to 50. For the results shown in fig. 2 (a),
only the last link was actuated, i.e. the number of inputs remained constant.

10 20 30 40 50
0

5

10

15

DOF

Single Input

10 20 30 40 50
0

10

20

30

DOF

Fully Actuated

(a) (b)

ti
n

m
s

IIM eUFM regular O(n) method

Figure 2. Run time comparisons for the forward dynamics evaluation n-link pendulum mod-
els

As can be seen here, the IIM is slightly worse than the eUFM in this case. However, having only
a single input is a pathological case for any system, so the same n-link pendulum is modeled as a
fully actuated system next. The results for these simulations are shown in fig. 2 (b). When looking
at the results for the eUFM here, it becomes clear why this method should be avoided for systems
with more inputs, the resulting computational cost becomes prohibitive.

When comparing the computational times of fig. 2 at 50 DOF, the results of which are listed in
table 1, the increase stays below 10% for the IIM and the O(n)-method, while for the eUFM the
computational time rises by ≈ 40% for each additional input.

Table 1. Average computational times for a 50-link pendulum

Single Input Fully Actuated
IIM 12.21 13.22 ms

eUFM 10.30 205.85 ms
O(n) 6.65 7.26 ms

6.2 Application example: A humanoid robot
Finally, the method is tested on a more practical system, a humanoid robot with 24 DOF and 42
inputs. The large number of inputs stems from 8 contact points that are defined for the robot, so
there are 24 contact forces and 18 motor torques. Again, the accelerations are calculated for a set
of 100 random states and inputs. The results of these simulations are listed in table 2 and show the
same trends as were observed in the n-link pendulum. The IMM takes roughly 30% longer than
the regular O(n)-method, while the eUFM performs much worse, as expected here due to the large
number of inputs.

Table 2. Average computational times for a humanoid robot

Humanoid
IIM 4.13 ms

eUFM 67.20 ms
O(n) 2.72 ms

7 CONCLUSIONS
This paper introduces the Implicit Inversion Method, which utilizes the subsystem formulation for
the EoM to effectively calculate the inertia-weighted input matrix M−1B, which embeds the input
variables into the system dynamics, without having knowledge of the system inertia matrix M.
It is used in conjunction with an O(n)-algorithm to evaluate the free system dynamics and uses
intermediate results from the algorithm.

The derivation of the IWIM leads to an intermediate result for which a matrix inversion is still
necessary, but the unitriangular structure of ΓΓΓ guarantees invertibility. This further enables the
inversion of the matrix without actually taking an inverse apart from one that was already known
from the evaluation of the O(n)-method, hence the name of this algorithm.

To check the performance of this method, run time comparisons were made between the IIM and
an extended form of the Unit Force Method. For single-input systems, the current implementation
of the IMM is slower than the Unit Force Method, but for multiple inputs it becomes much faster.
This point might be improved further through a more efficient implementation in the future, e.g.
in C++ instead of the current Matlab version.

ACKNOWLEDGMENTS
This work has been supported by the "LCM - K2 Center for Symbiotic Mechatronics" within the
framework of the Austrian COMET-K2 program.

REFERENCES
[1] Khatib, O.: A unified approach for motion and force control of robot manipulators: The

operational space formulation. IEEE Journal on Robotics and Automation (1987)

[2] Wensing, P.M., Orin, D.E.: Improved Computation of the Humanoid Centroidal Dynam-
ics and Application for Whole-Body Control. International Journal of Humanoid Robotics
13(01) (March 2016) 1550039

[3] Wensing, P.M., Orin, D.E.: Generation of dynamic humanoid behaviors through task-space
control with conic optimization. In: 2013 IEEE International Conference on Robotics and
Automation. (2013)

[4] Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2008)

[5] Bremer, H.: Elastic Multibody Dynamics. Springer (2008)

[6] Gattringer, H., Müller, A., Pucher, F., Reiter, A.: O(n) algorithm for elastic link/joint robots
with end-effector contact. In: IUTAM Symposium on Intelligent Multibody Systems – Dy-
namics, Control, Simulation. (2019)

[7] Wensing, P., Featherstone, R., Orin, D.E.: A reduced-order recursive algorithm for the com-
putation of the operational-space inertia matrix. In: 2012 IEEE International Conference on
Robotics and Automation. (2012)

[8] Lilly, K.: Efficient Dynamic Simulation of Robotic Mechanisms. Springer Science & Busi-
ness Media (1993)

[9] Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Volume 200. Springer-Verlag
Berlin Heidelberg (2008)

[10] Lu, T.T., Shiou, S.H.: Inverses of 2 × 2 block matrices. Computers & Mathematics With
Applications 43 (2002) 119–129

