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ABSTRACT

A rather new approach for detailed impact simulations in flexible multibody systems is
based on reduced isogeometric analysis (IGA) models. A precise impact simulation
requires an accurate representation of the deformation in the contact area, which can be
obtained using the Craig-Bampton method for model reduction. However, the resulting
equations of motion are numerically stiff and therefore computationally expensive
to solve. In literature, a quasistatic contact model for isoparametric elements has
been proposed to reduce the numerical stiffness. It neglects the dynamics of the local
deformations in the contact area. This work applies this quasistatic contact model to the
IGA model within the floating frame of reference approach. In the application example,
the impact of two flexible double pendulums is simulated. This setup includes large
rigid body motions and small elastic deformations.
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1 INTRODUCTION
Impacts within flexible multibody systems often include large rigid body motions before and after
impact. Elastic deformations remain small if stiff materials, e.g. steel or aluminum, are selected.
These conditions favor the floating frame of reference formulation [1] in the modeling of the flexible
bodies. The use of the floating frame of reference formulation requires global shape functions ΦΦΦ to
describe body flexibility. The global shape functions can be obtained with finite element methods,
e.g. isoparametric elements. A disadvantage of isoparametric elements is that the geometry is
discretized. However, detailed impact simulations depend on an accurate representation of the
geometry in the contact area. As an alternative approach, the isogeometric analysis (IGA) [2] can
be used to model the flexible body, since there is no error in the representation of the geometry.
In the context of efficient and accurate flexible multibody impact simulations, the global shape
functions are retrieved by model reduction. A straightforward reduction approach is modal reduction.
However, modal reduction does not consider the precise local deformation in the contact area. This
leads to inaccurate results, as shown in [3]. Alternatively, the Craig-Bampton method [4] can be
used. It approximates the overall elastodynamic behavior by "low" frequency normal modes and
local deformations in the contact area by constrained modes introducing numerically very high
frequencies. However, the combination of "low" and "high" frequency modes leads to numerically
stiff system equations requiring small time step sizes in the numerical integration. As an example,
in a rigid body motion before impact, the "high" frequency modes are not yet excited allowing
larger step sizes. An occurring impact results in local deformations exciting the "high" frequency
modes. The current and subsequent impacts require small step sizes, including the intervening rigid
body motions. It is shown in [5] that the "high" frequency modes only have small influence on the
dynamics. A quasistatic contact model based on isoparametric elements is introduced in [5], which
neglects the dynamics of the "high" frequency modes. Thereby, the numerical stiffness is reduced
and the numerical efficiency is increased. The aim of this work is to adapt the idea of a quasistatic
contact model to the IGA. The computational performance is to be improved during impacts and



subsequent rigid body motions.
This work is organized in the following way: The floating frame of reference formulation is briefly
summarized in Section 2. Section 3 introduces the concepts of the IGA and the determination of
the global shape functions. The contact algorithm, the quasistatic contact model as well as the
overall simulation procedure are detailed in Section 4. The following Section 5 provides a detailed
discussion of an application example, and the results are summarized in Section 6.

2 FLOATING FRAME OF REFERENCE FORMULATION
The floating frame of reference formulation is a well-established approach when modeling flexible
multibody systems [1]. Large nonlinear rigid body motion of the body reference frame KR are
described within the inertial frame KI. This work utilizes Buckens- and tangent-frames [1] as
floating frames. Given that the body deformations remain small and linear elastic, they can be
described conveniently in the body frame KR. Then, elastic deformations can be approximated
by nq global shape functions ΦΦΦ =

[
ΦΦΦ1 ... ΦΦΦnq

]
and their corresponding elastic coordinates qe.

The equations of motion for a free flexible body are given bymE mc̃⊺ C⊺
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where E is the identity matrix, RvIR is the absolute velocity of the reference frame, and RωIR is the
angular velocity. In Eq. (1), the mass of the body is denoted by m, the center of mass relative to KR
by c, the translational and rotational coupling matrices by Ct and Cr, the mass moment of inertia
by I, and the mass, stiffness, and damping matrix of the flexible body by Me, Ke, and De. The
right-hand side of Eq. (1) is composed of the vector of discrete forces hd, such as contact forces,
the body forces hb, the generalized inertial forces hω , and the internal forces he. The required
data to evaluate the equations of motion of a free flexible body are provided by the standard input
data (SID) [1].

3 GLOBAL SHAPE FUNCTIONS FROM IGA
Determining the global shape functions ΦΦΦ is a key issue in using the floating frame of reference
formulation. The straightforward approach is to generate a finite element model of the flexible
body and apply a model reduction technique. This section briefly presents the idea of the IGA
and the Craig-Bampton method to obtain the global shape functions ΦΦΦ via model reduction. A
more detailed introduction to the IGA can be found in [2]. It is worth mentioning that hierarchical
refinement is used as local refinement in this work. Interested readers are referred to [6] for more
details.

3.1 Basis splines
The IGA consists of three spaces: the physical space, the parameter space, and the index space. For
simplicity, only the first two spaces will be discussed in the following. The parameter space and the
physical space are visualized in Fig. 1. The parameter space consists of the local coordinates ξ , η ,
and ζ . The knot vectors ΞΞΞ =

[
ξ1 ξ2 ... ξn+p+1

]
, H =

[
η1 η2 ... ηm+q+1

]
, and Z =[

ζ1 ζ2 ... ζm+q+1
]

span up the parameter space and its elements. Additionally, the n, m, and ℓ
local shape functions Ni,p, M j,q, and Lk,r of order p, q, and r are defined in the parameter space in
the respective local coordinate direction. The local shape functions are based on B-splines, which
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Figure 1: Example of an axisymmetric sphere that should be refined in the contact area.

can be computed recursively with the Cox-de Boor algorithm,

p = 0 : Ni,0(ξ ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

(2)

p > 1 : Ni,p(ξ ) =
ξ −ξi

ξi+p−ξi
Ni,p−1(ξ )+

ξi+p+1−ξ

ξi+p+1−ξi+1
Ni+1,p−1(ξ ). (3)

The same formalism in Eq. (2) and Eq. (3) holds for M j,q and Lk,r in η- and ζ -direction. Since
recursive functions are numerically inefficient, a non-recursive algorithm suggested in [7] is used.

3.2 Non-uniform rational basis splines
As visualized in Fig. 1, the physical space consists of the control points Pi, j,k, which are arranged
by the control net. The task of the control points is to span the geometry in the physical space. The
number of control points is identical to the number of basis functions resulting in a net of n×m× ℓ
control points. In addition to the physical position, each control point has a weight wi, j,k. The
transformation from the parameter space into the physical space requires the non-uniform rational
basis splines (NURBS) basis Rp,q,r

i, j,k (ξ ,η ,ζ ) given by

Rp,q,r
i, j,k (ξ ,η ,ζ ) =

Ni,p(ξ )M j,q(η)Lk,r(ζ )wi, j,k

∑
n
î=1 ∑

m
ĵ=1 ∑

ℓ
k̂=1 Nî,p(ξ )M ĵ,q(η)Lk̂,r(ζ )wî, ĵ,k̂

. (4)

The NURBS basis Rp,q,r
i, j,k (ξ ,η ,ζ ) and the control points Pi, j,k then lead to a NURBS solid

S =
n

∑
i=1

m

∑
j=1

ℓ

∑
k=1

Rp,q,r
i, j,k (ξ ,η ,ζ )Pi, j,k (5)

in the physical space. The deformation d can be written in matrix-vector notation as

d = Nu =

Rp,q
1,1,1 0 0 ... 0
0 Rp,q

1,1,1 0 ... 0
0 0 Rp,q,r

1,1,1 ... Rp,q,r
p+1,q+1,r+1




ux
1,1,1

uy
1,1,1

uz
1,1,1
...

uz
p+1,q+1,r+1

 , (6)

where the basis functions of the corresponding element are summarized in the matrix N and the
displacements of the control points in u.

3.3 Model order reduction
As with the floating frame of reference formulation, it is assumed that only small elastic deforma-
tions occur. Therefore, linear elasticity is assumed and the weak Galerkin method is applied as for



isoparametric elements [8]. From this, the equations of motion of the assembled IGA based finite
element model are given by

Meüe +Keue = 0, (7)

where Me is the full mass matrix, Ke the full stiffness matrix, and ue the displacements of the
control points. For the incorporation of the isogeometric model into the equations of motion (1),
the global shape functions ΦΦΦ are required. A simple and straightforward approach for reducing
the full finite element model (7) is modal truncation. However, the "low" frequency eigenmodes
typically are not able to precisely describe local deformation in the contact area. This leads to
inaccurate results, as shown in [3]. Alternatively, the Craig-Bampton method [4] is used. The
Craig-Bampton method combines fixed-interface normal modes and constraint modes. The normal
modes represent the overall flexibility and the constraint modes modes approximate the deformation
in a specific area, e.g. the contact area. The constraint modes require the selection of predefined
control points on the exterior surface. The procedure results in the global shape functions ΦΦΦ, which
are orthogonalized and normalized to the mass matrix. The reduced mass and stiffness matrix are
then given by

Me = ΦΦΦ
⊺MeΦΦΦ = E and Ke = ΦΦΦ

⊺KeΦΦΦ = diag(ω2
i ), (8)

respectively, where ωi are the eigenfrequencies. A key issue of the Craig-Bampton method is the
numerical stiffness of the equations of motion (1). This is due to "low" frequency normal modes and
the "high" frequency constrained modes. A simple method to improve the numerical performance
is to modally damp the "high" frequency modes. This method has been already applied in IGA
impact simulations [6].

4 CONTACT HANDLING IN IGA
Besides modal damping, a quasistatic contact model can be used to improve numerical performance
of the contact simulation. This section details a contact algorithm of IGA bodies in flexible
multibody systems, introduces the concept of a quasistatic contact model and proposes a contact
simulation procedure.

4.1 Contact evaluation
Several methods exist for discretizing the contact of two IGA bodies. This work uses a Node-
to-segment method. This is more efficient than an integral description, but the accuracy is still
comparable [9]. In the course of a node-to-segment method, a predefined contact interval is
discretized using a collocation method, e.g. Botella points [9]. This collocation method is paired
with a penalty method for contact treatment. The corresponding penalty factor cp is generally
chosen heuristically. Thereby, the penalty factor should be chosen large enough such that the
results become independent of the chosen parameter [10]. Increasing the penalty factor beyond its
converging value also increases the numerical stiffness of the equations of motion (1). This results
in a higher computation time or the numerical integration might even terminate unsuccessfully.
The contact is evaluated in the inertial frame KI. Therefore, the positions of the deformed control
points IPi, j,k in the inertial frame are required. The positions of the deformed control points are
composed of the undeformed control points RP0

i, j,k and the elastic deformation ue,i, j,k based on the
global shape functions ΦΦΦi, j,k and the elastic coordinates qe as

RPi, j,k =
RP0

i, j,k +ue,i, j,k =
RP0

i, j,k +ΦΦΦi, j,kqe. (9)

The absolute positions of the control points are given by

IPi, j,k = SIR(βββ IR)
(RrIR +RPi, j,k

)
(10)

requiring the reference frame position RrIR and the rotational parameters βββ IR ∈ ε3. The rotation
matrix SIR(βββ IR) is determined with Cardan angles. In the course of contact evaluation, one body is
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Figure 2: Contact detection between the contact and target body.

defined as contact body and the other as target body, as depicted in Fig. 2. The collocation points are
located on the exterior surface of the contact body within the contact area and are tested for contact
with the exterior surface of the target body. As an example, a surface with the local coordinates ξT
and ηT is integrated, keeping ζT constant. The contact of two bodies is checked by solving the
nonlinear equation[

∂xT(ξT,ηT,ζT)
∂ξT

∂xT(ξT,ηT,ζT)
∂ηT

]⊺
(xC,i(ξC,i,ηC,i,ζC,i)−xT(ξT,ηT,ζT)) = 0 (11)

with the Newton’s method for the respective knot coordinates. By solving Eq. (11) for the knot
coordinates ξT and ηT, the target point xT closest to the current collocation point xC,i is found. The
distance gn between the contact and target point is determined by

gn = n⊺(xC,i(ξC,i,ηC,i,ζC,i)−xT(ξT,ηT,ζT)), (12)

where the normal vector n is orthogonal to the surface of the target body. A positive normal gap gn
indicates a non-active contact. If the normal gap gn is negative, the contact forces fC,i and fT,i of the
contact and target body for the current collocation point are determined by

fC,i =+cpgnN⊺
Cnŵi and fT,i =−cpgnN⊺

Tnŵi, (13)

where cp is the penalty factor, NC and NT are the local shape functions, and ŵi is the collocation
weight of the current collocation point. See [9] for the derivation of the collocation weight. To
eliminate the distinction between contact and target body, the roles are switched and the resulting
contact forces are averaged. The resulting contact forces at each collocation point are assembled to
the corresponding degree of freedom. The assembled vector Ifi, j,k represents the contact force at
each individual control point in the inertial frame KI. Including the contact forces in the equations of
motion (1) requires the determination of the discrete forces hd. The contact forces are transformed
to the body frame by

Rfi, j,k = S⊺
IR

Ifi, j,k. (14)

According to [1], the discrete forces hd are computed with

hd =
n

∑
i=1

m

∑
j=1

ℓ

∑
k=1

 Rfi, j,k
RPi, j,k×Rfi, j,k

ΦΦΦ
⊺
i, j,k

Rfi, j,k

 . (15)

Regarding the implementation, the contact search can be parallelized with respect to the collocation
points xC,i(ξC,i,ηC,i,ζC,i).

4.2 Quasistatic contact model
The concept of the quasistatic contact model is the partitioning of the equations of motion into
"low" frequency (lf) modes and "high" frequency (hf) modes. The partitioning can be applied to



Eq. (1) resulting in
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where damping is neglected. It is shown in [5] that the "high" frequency modes only have small
influence on the dynamical behavior and can be neglected in Eq. (16). Assuming quasistatic
behavior of these modes leads to the following differential-algebraic system of equations of motion
for a single body in contact
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The algebraic equations in the last row represent the balance of the contact forces hhf
d and the inner

forces Khf
e qhf

e . These equations are essential to precisely represent the elastic deformations in the
contact area. The differential-algebraic system (17) can be solved directly or the algebraic quasistatic
contact equations are solved separately. Since the direct solution appears to be numerically
challenging, the latter option is chosen. Therefore, the quasistatic contact equations

fqs(qhf
e ) = qhf

e −
(

Khf
e

)−1
hhf

d (rIR,βββ IR,q
lf
e ,q

hf
e ) = 0 (18)

need to be solved in every time step for the "high" frequency elastic coordinates qhf
e . This is achieved

by Newton’s method requiring the Jacobian Jqs(qhf
e ) of Eq. (18). It is determined numerically

by first order finite differences. To counter rounding and approximation errors of the Jacobian,
a method to adjust the step size is applied [11]. Computing the Jacobian numerically in each
Newton’s iteration is highly expensive, due to the high number of elastic coordinates. To reduce
computational effort, the Jacobian can be updated with Broyden’s method [12]. In practice, the
quasistatic contact model might become numerically challenging. This is the case when the penalty
factor is too high and causes rank issues in Newton’s method [3]. Therefore, the penalty factor
needs to be chosen with care.
The developed quasistatic contact algorithm is detailed in Algorithm 1. The inputs of the quasistatic
contact algorithm include the results of the previous time step. Among them are the "high"
frequency elastic coordinates qhf

e , the Jacobian Jqs(qhf
e ) of Eq. (18) and the Jacobian counter kjac.

Initially in line 1, Eq. (18) is checked for contact. If no contact occurs, the discrete forces hlf
d are

set to 0 in line 24. If a contact is detected, a while loop is initialized in line 4 to solve Eq. (18)
with Newton’s method. If the Jacobian counter kjac is equal to its maximum kmax

jac in line 5, a
new Jacobian is determined in line 6 by numerically expensive first order approximation, and the
Jacobian counter kjac is reset. Otherwise, the previously with Broyden’s method updated Jacobian
is reused in line 9. Then, Newton’s method is applied in line 11, and the counter k of the Newton
iterations is increased in line 12. After the Newton step, the quasistatic equation (18) is evaluated in
line 13 which is required for Broyden’s method in line 14. Newton’s method terminates successfully
in line 15 and 18, if the solution does not change within the tolerance ε or the maximum number of
Newton steps kmax is reached. Exceeding the maximum number of Newton steps kmax is non-critical,
since in practice the stop criterion in line 15 is only minimally violated.
After the while loop, the discrete forces hlf

d are determined in line 21 with Eq. (15), and the Jacobian
counter kjac is set back to 0. Therefore, the Jacobian can be used more than the kmax

jac times. A wide
range of numerical examples showed that this reduces the number of computed Jacobians while
the results of the contact forces are nearly identical. Finally, the parameters kmax

jac = 15, kmax =

3∗ kmax
jac = 45, and ε = 10−15 show efficient and robust behavior in tests.



Algorithm 1 Solution of the quasistatic contact equation (18).
Input: qhf

e , Jqs(qhf
e ), kjac Output: qhf

e , Jqs(qhf
e ), kjac, hlf

d

1: fqs(qhf
e ){contact check Eq. (18)}

2: if contact then
3: k← 0{Newton counter}
4: while true do
5: if kjac = kmax

jac then
6: Jqs(qhf

e ){new Jacobian}
7: kjac← 1{reset counter}
8: else
9: kjac ++{reuse Jacobian}

10: end if
11: qhf

e,k+1← qhf
e,k−Jqs(qhf

e )
−1fqs(qhf

e )
12: k++{Newton counter}
13: fqs(qhf

e ){Eq. (18)}

14: apply Broyden’s method to J(qhf
e )

15: if max(|qhf
e,k+1−qhf

e,k|)< ε then
16: break{successful}
17: else if k = kmax then
18: break{successful}
19: end if
20: end while
21: hlf

d {discrete forces}
22: kjac← 0{reuse Jacobian}
23: else
24: hlf

d ← 0
25: kjac← kmax

jac {new Jacobian}
26: end if

4.3 Contact simulation procedure
This section introduces a contact simulation procedure including a contact detection, which allows
switching the integration algorithm as well as its settings. Independent of a quasistatic contact,
dividing a contact simulation into multiple phases, which are solved with different integration
methods and settings, can be computational efficient. In the pre-impact phase, the elastic coordinates
are not yet excited allowing larger step sizes. The impact phase requires the smallest step sizes due
to high dynamics. In the post-impact phase the elastic coordinates are excited due to the impact
but slightly larger step sizes are feasible compared to the impact phase. Additionally, the contact
algorithm does not need to be evaluated until a new contact is detected. However, a contact search
is needed to switch the simulation phase. In this work, the minimization of the distance function

fd(ξC,ηC,ζC,ξT,ηT,ζT) = ∥xC(ξC,ηC,ζC)−xT(ξT,ηT,ζT)∥ (19)

returns the points xC and xT on the contact and target body at which the two bodies are the closest.
Here the MATLAB optimizer fmincon() is used. Another well known and computational more
efficient approach is the use of bounding spheres [13]. However, the position of the closest points
in the parameter space is in the scope of interest of future works. To reduce the computational
effort of minimizing Eq. (19), the minimization is only performed every ∆tsearch = 100µs. As a
consequence, the contact and target bodies can already penetrate each other in a pre- or post-impact
phase. Since there must be no contact at the beginning of the impact phase, the over-calculated time
steps are discarded until no more contact occurs. Then the impact phase begins.
The resulting procedure is visualized in Fig. 3. In the different phases, different integration methods
and maximum step sizes have shown to be most efficient in numerical studies. The selection
is additionally dependent on whether a contact according to Eq. (16) with modal damping or
quasistatic contact is computed. The recommend settings are listed in Tab. 1. The maximum step
size in the contact phase is determined by Nyquist–Shannon sampling theorem [14], where f max

is the maximum eigenfrequency within the flexible multibody system. The quasistatic contact
simulation uses an explicit integrator. If an implicit integrator, e.g. MATLAB ode15s() or ode23tb(),
is chosen, the solution of two nonlinear systems of equations will be chained into each other.
Instead, ode45() is used with two modifications. First, contact forces and "high" frequency elastic
coordinates are saved during the time integration. Otherwise, post-processing is as time-consuming
as the simulation itself. Second, MATLAB integrators use variable step sizes. If an integration
step is discarded, the initial conditions of Algorithm 1, i.e. the Jacobian Jqs(qhf

e ), from the last
successful step are used.
Essential functions, e.g. the contact evaluation in Section 4.1, the quasistatic contact in Section 4.2,



pre-impact
t0, t1, ..., ti tp+1, ...ti+1, ..., tp

evaluate

-standard
-qs contactfmincon( fd)

contact

integration

search

if ≈ 0

post-impactimpact

contact

→stop time

fmincon( fd)

contact

integration

search

if ≈ 0
→stop time
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Table 1: Recommended integrator settings.

modal damping quasistatic
pre- ode15s() ode23tb()
impact ∆tmax

pre = 100µs ∆tmax
pre = 100µs

impact ode15s() mod. ode45()
∆tmax

con = 1
2 f max ∆tmax

con = 1
2 f max

post- ode15s() ode23tb()
impact ∆tmax

post = 100ns ∆tmax
post = 100µs

and the minimization of Eq. (19) are compiled into a MATLAB EXECUTABLE (MEX) files and
parallelized if applicable.

5 APPLICATION EXAMPLE: IMPACT OF TWO FLEXIBLE DOUBLE PENDULUMS
This application example demonstrates the usage of a quasistatic contact model in a flexible
multibody system with large rigid body motions. For comparison, a model reduced with Craig-
Bampton method and modally damped "high" frequency modes is used. Due to the reduced
numerical stiffness of the quasistatic contact model, it is expected that the quasistatic contact model
will have lower computation times. Since the dynamics of the "high" frequency modes of the
quasistatic contact model are neglected, the influence on accuracy is of interest. The setup is
visualized in Fig. 4 and consists of two flexible double pendulums composed of elastic spheres and
elastic connection rods. The locally refined IGA spheres are reduced with nlf

q = 25 normal modes
and nhf

q = 3×218 = 654 constraint modes. The rods are modeled by globally refined IGA models,
which are modally reduced with nq = 20 elastic coordinates. The double pendulum on the left-hand
side in Fig. 4 is initially deflected by α0 = 20◦ and β0 = 21.14◦. The two angles are chosen such
that at the time of impact α = β = 0◦ holds. Both pendulums are at rest at the beginning of the
time simulation. The initial values of the elastic coordinates of the four flexible bodies need to be
determined, since gravity is under consideration with g = 9.81m/s2. A straightforward approach
is to solve the equations of motion for the elastic coordinates qe at the time t = 0s such that the
accelerations q̈e vanish. Subsequently, the flexible multibody system is simulated for 200ms. Due
to initial deflection of the angles α0 and β0, the pre-impact phase consists of a large rigid body
motion until the left pendulum impacts on the right pendulum. In the impact phase, the contact is
evaluated and the elastic modes are excited. Finally, the post-impact phase includes a large rigid
body motion. As a reference, a rigid body simulation with Hertzian contact [15] is chosen.
As mentioned before, the penalty factor cp is determined heuristically by increasing it until the
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Figure 4: Simulation setup of two flexible double pendulums.



contact force converges. The procedure is visualized in Fig. 5. The maximum contact force is
displayed in Fig. 5a and the required computation time in Fig. 5b. For the quasistatic contact model,
the maximum possible penalty factor is cp = 1×1018 N/m. A further increase results in a singular
Jacobian Jqs of Eq. (18). Overall, the results of the maximum contact force in Fig. 5a show similar
behavior between the two contact models. Significant differences are visible in Fig. 5b with respect
to the computation time. The quasistatic contact model requires a fourth of the time of the modal
damping model. With modal damping, the simulation needs approximately two hours for penalty
factors less or equal than cp = 1×1018 N/m. The next higher value cp = 2×1018 N/m requires
almost twice the computation time. As mentioned before, increasing the penalty factor beyond its
converging value also increases the numerical stiffness of the equations of motion, and, therefore,
the computation time. An increase of the penalty factor beyond cp = 1×1018 N/m only results in
minor changes in the contact force, see Fig. 5a. Therefore, the penalty factor cp = 1×1018 N/m is
chosen.
The computation times for all three phases are listed in Tab. 2. The quasistatic contact model is faster
in all three phases, especially in the post-impact phase. The major reduction of the computation
time here can be explained with the reduced numerical stiffness of the quasistatic contact model.
After the impact, only the "low" frequency modes are excited allowing larger step sizes.
Finally, the accuracy of the quasistatic contact model is investigated. The contact forces are
visualized in Fig. 6. The overall time course in Fig. 6a and the visualization of the impact phase in
Fig. 6b show good agreement between the quasistatic contact model and the modal damping model
with the analytic solution by Hertz [15]. While the computation time of the quasistatic contact
model is significantly reduced, the results are very similar to the modal damping model.
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Figure 5: Convergence of the penalty factor.

Table 2: Computation times of the two double pendulums.

model cp pre-impact impact post-impact
modal damping model 1×1018 N/m 9.5min 1.9h 15h
quasistatic contact model 1×1018 N/m 16s 24min 1.3min
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Figure 6: Time course of the contact force.



6 CONCLUSIONS
Overall, it can be concluded that a quasistatic contact model can be smoothly included in the
floating frame of reference formulation. Subsequently, an impact simulation can be performed
using the penalty formulation. The penalty factor converges for quasistatic contact models, and
the differences in the accuracy between the quasistatic contact model and the modal damping
model are minor. Due to the reduced numerical stiffness of the quasistatic contact model, the
computational performance significantly improves compared to a modally damped contact model.
The biggest difference occurs in the post-impact phase. Since the quasistatic contact equations (18)
are numerically challenging to solve, the penalty factor could not be increased beyond its converging
value in the application example. In a future work, this characteristic can be used to adaptively
determine the penalty factor.
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