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ABSTRACT

In recent times, many industrial applications demand innovative energy-efficient solu-
tions. One of the main causes of energy loss is due to friction between body surfaces
in contact. There is a great amount of research aimed to understand the friction mech-
anisms to allow its reliable prediction during simulation. In the Fifties and Sixties of
the 20th Century, many investigations carried out experimental activities that led to
coefficient of friction formulas for lubricated surfaces under a combination of sliding
and rolling relative motion. The formulas have been mainly deduced by mathemat-
ical fitting of results obtained with experimental measurements on rolling disks and
different load, lubricating and kinematic conditions. The purpose of this paper is
twofold: on the one hand, reviewing semi-empirical formulas for the computation
of friction coefficient in lubricated contact under different operating conditions; on
the other hand, embodying and comparing, in multibody dynamics simulation en-
vironment, contact force models coupled with the metal-metal lubricated empirical
friction formulas. The implementation of empirical formulas is straightforward and
computationally efficient, but one can evaluate the performance of these models in
characterising the dynamics of the lubricated joint. With this purpose, a multibody
simulation of a scotch-yoke mechanism with non-ideal prismatic joint is conducted.
The existence of clearance causes the dynamic behaviour of the system to be different
from the ideal joint. The difference between each friction model is emphasized by the
means of both simulation output and computation time.

Keywords: Contact dynamics, Lubricated joints, Joint clearance, Multibody dynam-
ics, Friction models.

1 INTRODUCTION
During the 1950s and 1960s of the 20th Century, several experimental studies suggested many
formulations of the friction coefficient for lubricated surfaces under a mixed relative motion of
sliding and rolling. The formulas have been mainly deduced by mathematical fitting of results ob-
tained with experimental measurements on rolling disks and different load, lubricating and kine-
matic conditions. The idea of a disk-based experimental apparatus for investigating the friction
between surfaces in lubricated line contact dates back to Merritt [1]. His testing analogy between
rolling disks and meshing gears inspired many investigators that improved and adapted to their



purposes the original experimental apparatus based on disks test machines. For instance, Tabor
et al. [2, 3, 4], Hersey [5, 6] offer an extensive historical review about experimental activities
on rolling friction. Martin [7] discusses various analyses about the effects of rolling and sliding
friction in gear drives. Many industrial applications demand innovative, energy-efficient solutions.
Friction between bodies in contact with one other’s surfaces is one of the major sources of energy
loss. Thoughtful investigations have been dedicated to better understand the mechanisms of fric-
tion in order to comprehend these phenomena and provide accurate estimations. The emphasis of
this study is on metal-metal lubricated joints, where a fluid film is interposed between contacting
surfaces to reduce friction. Some researchers (e.g. Michlin [8], Valentini et al. [9], Flores et al.
[10, 11], Zhao et al. [12, 13]) investigated the multibody dynamics modeling of lubricated joints.
Within multiody dynamics simulations, empirically based formulas offer a concise and compu-
tationally efficient engineering approach to simulate complex friction phenomena in metal-metal
lubricated slotted joints. These formulas have often been adopted in gear dynamics simulation
(e.g. [14, 15]). However, a survey on their application in multibody dynamics simulation does
not seem to be available. With the focus on the multibody dynamics simulation of a scotch-yoke
linkage with a straight slot, the purpose of this paper is twofold:

• to review semi empirical formulas and provide a compiled list of friction coefficient formu-
lations deduced mainly by fitting of experimental data;

• to embody and compare, in multibody dynamics simulation environment, contact force mod-
els (e.g. [16, 17]) coupled with the metal-metal lubricated empirical friction formulas and
evaluate the possibility of employing these formulations bypassing the solution of the elas-
tohydrodynamic problem (e.g. Reynolds equation).

2 CONTACT FORCE MODELS
The elastic contact force models play an important role in multibody dynamics simulation of
mechanical systems with clearances in the kinematic pairs. Many investigations and reviews have
been dedicated to the topic (e.g. [16, 17, 18, 19]) and it is out of the scope of this work to analyse
the plethora of formulation available in literature. One of the most extensively used formulation
for contact force is the one proposed by Lankarani and Nikravesh [20]. The kinetic energy lost as
a result of internal damping allows to estimate the hysteresis-damping factor. The loss of kinetic
energy is evaluated based on the kinetic energy prior to and following the contact (i.e restitution
coefficient cr) as well as the normal component of the relative contact velocity at the beginning of
the contact-impact event δ̇ . In particular, the normal force in cylindrical contact is evaluated as

Fn = Kδ
n

(
1+

3
4

δ̇

δ̇0
(1− c2

r )

)
(1)

where K is the contact-stiffness parameter, δ represent the relative indentation between bodies in
contact, and n is the exponent representing the non-linear relation between penetration and force
depending on the material and the local geometrical properties of contacting bodies. The contact
stiffness parameter K can be either evaluated experimentally or analytically and for the contact
between two cylinder requires an iterative solution of an implicit equation. In order to overcome
this shortcomings, Autiero et al. [17] expressed the force indentation relations with parametric
fitted polynomial of the type

Fn = Kδ
n (2)

in order to speed up the computation with relatively low error. A dry frictionless contact produces
only a force that is normal to the surfaces in contact; conversely, friction simultaneously generates
a tangential component. Contact force models for cylinders are employed in the evaluation of
normal component, while for the friction force some precautions are needed to avoid numerical



difficulties. Among the plethora of possibility for the evaluation of friction force preventing nu-
merical problems in dry [21] and lubricated [22] contacts, only the one chosen for the application
in Section 5 is briefly discussed. The model, reported in [11], consists in a modified Coulomb
force expressed as

FT =−cd µFn
V⃗s

|V⃗s|
(3)

where µ represents the friction coefficient and the dynamic correction factor cd prevents the fric-
tion force from changing direction for negligible tangential velocity values, minimizing numerical
issues. This factor is defined as

cd =


0 if |V⃗s| ≤ v0
|V⃗s|−V0
V1−V0

if V0 ≤ |V⃗s| ≤V1

1 if |V⃗s| ≤V0

(4)

in which V0 and V1 are the threshold velocities for the sliding speed. It is important to stress that
the Equation 3 does not take into account stiction, but only sliding.

3 REVIEW OF FRICTION COEFFICIENT FORMULATIONS
Many researchers conducted experimental work in the fifties and sixties of the 20th century that
led to coefficient of friction formulas for lubricating surfaces under a combination of relative slid-
ing and rolling motion[4]. The formulas were mainly derived by mathematical fitting of results
obtained from experimental measurements of rolling disks under different loads, lubricants and
kinematic conditions. Most sliding contacts are lubricated, in this case friction decreases with
increasing sliding speed up to the formation of a sufficiently thick lubricant film. After that, a
mixed or full film condition is observed and the friction coefficient can either be constant, raise
or decrease with increased sliding speed [22]. This phenomenon was described by Stribeck [23],
whose name is often associated with sliding friction in lubricated contacts running under bound-
ary, mixed, and full film conditions. The lubrication regime and its effect on friction is depicted
in Figure 1, where the so-called Stribeck curve is qualitatively illustrated. In boundary lubrication
(region A), the load is mostly carried by asperities and the lubricant act at monomolecular scale
[24]. Hence, the type of the lubricant and the mating surfaces are the primary factor of bound-
ary friction, which is relatively unaffected by speed, load, and lubricant viscosity. At low loads
and relatively high speed, hydrodynamic lubrication regime is reached (region C). A thick layer of
lubricant now completely separated the surfaces and the friction is calculated from Reynolds equa-
tions. The region B is called mixed lubrication where the load is shared among fluid and asperities.

Figure 1. Stribeck curve: friction coefficient varying the ratio between the product viscosity
times rotational speed (νn) and the load (P) .



Despite a few exceptions, mixed lubrication region is where the majority of gear applications are
found. Low speed gears that are severely loaded exhibit symptoms of being in the boundary region,
while lightly loaded high speed gears may achieve complete fluid film lubrication. All friction co-
efficient models, obtained for gear application, are evaluated for mixed lubrication conditions,
which means that in quantitative terms the specific film thickness (i.e λ = hmin/σ , with hmin and
σ the minimum film thickness and composite surface roughness respectively) assume values be-
tween 0.5 and 3 [25]. The authors of this paper are well aware that more sophisticated models
have been developed for mixed lubrication condition and available in the current technical liter-
ature, especially regarding the definition of the friction coefficient for two mating gears [26, 27].
However, the present investigation focuses on simplified models that could be conveniently em-
bedded in the algorithms for the dynamic simulations of multibody systems working under non
stationary conditions, with the intent of establishing a trade-off between computational efficiency
and accuracy. Moreover, the formulas herein reviewed have been also embodied in gear dynamics
modelling and experimentally validated [7, 28, 14]. In table 1 the reviewed friction coefficient
formulations are displayed reporting units and application bound where available. Referring to the
table, µ represents the friction coefficient, ν0 the kinematic viscosity at mean surface temperature,
η0 the dynamic viscosity at mean surface temperature, W the normal load, Vs the sliding speed,
VΣ the sum of profiles velocities, Vr the rolling speed (i.e Vr =VΣ/2), S the surface roughness and
R the effective radius of curvature (i.e. R = RiR j/(Ri +R j), where Ri and R j are respectively the
radius of curvature of profile i and j) . If there is no direct indication on the formula applicability
range, one can refer to single articles and take the experiments conditions in terms of viscosity ve-
locities and load as reference. Even though all the researchers provided different formulation for
the friction coefficient, their observations in mixed condition (i.e. region B in the Stribeck curve)
are quite similar and summarized below:

• The entraining lubricating fluid kinematic viscosity (ν0) has a strong effect on the friction
coefficient. They observed a rise in friction coefficient with reduced ν0 apart from cases
where there were small sliding speed and high rolling speed (i.e. surface speed sum VΣ).
The bigger the sliding speed the higher the effect of viscosity on friction coefficient.

• The friction coefficient lowers when rolling velocity VΣ increases. This effect is more signif-
icant with reduced load, viscosity and sliding speed. The same behaviour can be observed
for the sliding speed Vs.

• Increasing the load W (i.e the contact pressure) results in an higher friction coefficient.

Due to the experimental observation agreement in this regime of lubrication, the empirical formu-
las reported are similar from the physical quantity dependence viewpoint. Besides all the already
mentioned physical quantities that influence the friction coefficient, Kelley & Lemanski propose,

Figure 2. Friction coefficient varying sliding speed for different semi-empirical formulations.



Table 1. Friction coefficients under combined rolling and sliding

Author Formula

Y.A. Misharin1[29, 30] µ = 0.325(ν0VΣVs)
−0.25

Sasaki2et al. [31] µ = k
(

ηV 4
r

W 1.7

)−0.12

H. Blok3[29] µ = 0.126
(
η0V 0.85

Σ
V 1.44

s W−0.43
)−0.184

H. Blok3[29] µ = 0.118
(
β
−0.16
0 η0V 1.19

Σ
V 1.22

s W−0.44
)−0.178

Askwith et al.4[32, 33] µ = 0.0099log10

(
3.89 ·107W

η0VsV 2
Σ

)

Benedict & Kelley4[24] µ = 0.0127log10

(
3.17 ·108W

η0VsV 2
Σ

)

Leach & Kelley 4[34] µ =−0.00738log10

[
1.936 ·1026

(
VsV 2

Σ

η7
0W 7.9

)]

Kelley & Lemanski4[33] µ = 0.0099log10

(
3.89 ·107W

η0VsV 2
Σ
[(Ri +R j)/3]2

)

O’Donoghue & Cameron5[35] µ =

(
S+22

35

)
0.6

η
1
8

0 V
1
3

s V
1
6

Σ
R

1
2

Drozdov & Gavrikov 6[36] µ =
1

0.8ν
1
2

0 Vs +VΣφ +13.4
1 Validity range 0.02 ≤ µ ≤ 0.08, ν0 [cSt], Vs and VΣ [m/s] .
2 η0 [kgf· s/cm2], W [kgf/cm], Vr =

VΣ

2
[cm/s], S =

Vs

Vr
,

k =

{
0.037 if S = 0.31,
0.026 if S = 1.22

.

3 η0 [cP], β0 = 0.012η0.33
0 [◦C−1], Vs and VΣ [m/s], W [kgf/cm].

4 Vs and VΣ [inch/s], W [lb/in], η0 [cP], Ri and R j [inch].
5 S: [µ inch], Vs and VΣ [inch/s], R [inch].
6 ν0 [cSt], Vs and VΣ [m/s] , φ = 0.47−0.13 ·10−4 pmax−0.4 ·10−3ν0, with pmax,

maximum contact pressure [kgf/cm2]. Vs ≤ 15 m/s, 3 ≤VΣ ≤ 20 m/s, 4 ≤ η0 ≤
500 cSt, 4000 ≤ pmax ≤ 20000 kgf/cm2.



without experimental evidence, a factor dependent on gear dimensions by the means of the radii
of curvature. O’Donaghue & Cameron are the only authors among the ones herein reviewed that
directly include the surface roughness effect in the friction coefficient formulation. The other in-
vestigators either do not discuss it or give corrective coefficients. Figure 2 reports comparative
results of the friction coefficient computed through all different friction models as a function of
the sliding speed.

4 MULTIBODY MODEL
A scotch-yoke mechanism with a straight guide, as depicted in Figure 3, has been chosen for
testing different friction formulations. This mechanism is made up of four rigid bodies (crank,
pin, slider and frame), two revolute joints, one prismatic joint and a non ideal joint with friction
between pin and slider slot. The pin revolute joint is modelled with friction in order to avoid
uncontrolled rotational speed of the pin itself, while all the other kinematic pairs are ideal and
frictionless. The geometrical data and inertia parameters are summarized in Table 2, while all the
other parameters are listed in Table 3. It is worth noting that the system taken as a case study has

Figure 3. Scotch-Yoke mechanism with pin-slot non-ideal joint.

lubricated contacts with backlash and can not be reduced to a stationary system. It is possible to
formulate the equations of motion for a dynamic system under holonomic constraints as a system
of DAE. Indicated by q the position and orientation of all bodies the system can be expressed as:[

MMM ΨΨΨ
TTT
q

ΨΨΨq 000

]{
q̈qq
λλλ

}
=

{
QQQ
γγγ

}
(5)

where MMM is the system mass matrix, ΨΨΨq is the Jacobian matrix related to kinematic constraints,
q̈ is the vector containing generalized accelerations, λλλ is the Lagrange multiplier vector, QQQ is the
vector of generalized forces and γγγ can be expressed as

{γγγ}=−([ΨΨΨq]{q̇qq})q{q̇qq}− [ΨΨΨqt ]{q̇qq}− [ΨΨΨtt ] (6)

From a numerical prospective, the multibody dynamic simulation is performed using the Baum-
garte method [37] to ensure the stabilization of kinematic constraint violation. The contribution of
contact pairs is accounted into the force vector QQQ rather than in the jacobian ΨΨΨ as the kinematic
joints. The acceleration vector q̈qq and Lagrange multipliers λλλ are computed given the initial con-
ditions for position and velocity. The resulting acceleration is integrated to obtain velocity and
position at the next time step. The numerical integration is performed using the Matlab routine
ode45, based on the explicit Runge-Kutta method. As it is already pointed out, the cylindrical con-
tact force models available in literature are mostly implicit. In order to speed up the computation,



using the approach employed in [17], the stiffness parameter K is derived from polynomial fitting
while the dissipation component is evaluated according to the Equation 1.

Geometry Member Mass Inertia

Crank length 50 mm Crank 0.300 kg 3.8e2 kg·mm2

Slot width 16 mm Pin 0.025 kg 7.8e-1 kg·mm2

Slot thickness 16 mm Slider 0.300 kg
Clearance 50 µm

Table 2. Geometric and inertia parameters of the Scotch-Yoke mechanism.

Young’s modulus 207 GPa Baumgarte coefficients [α,β ] [5,5]
Poisson ratio 0.3 Integration step size variable
Restitution coefficient 0.9 Integration tolerance 1e-6
Dynamic viscosity 400 cP Crank angular velocity ω 5000 rpm

Table 3. Data for dynamic simulation of the Scotch-Yoke mechanism.

5 RESULTS AND DISCUSSION
The outcomes of three non-ideal joint with clearance cases will be shown in this section: dry
without friction, dry with constant friction (µ = 0.1), and lubricated joint with friction estimated
by the means of previously reviewed semi-empirical models. Generally, reaction force in joint with
clearance exhibits peaks not observed in the ideal joint. These spikes are generated from impact
and this can result in a chaotic and non-deterministic behaviour. However, in this particular case
it can be observed a periodic trend in which the solution is not effected by initial conditions. For
this reason, only results for one crank full rotation are presented. Firstly, a sensitivity analysis is
conducted in order to highlight the effect on the interaction force of both the restitution coefficient
cr and the clearance c between pin and slot. The effect of clearance, as shown in Figure 4, is
twofold. On the one hand, a larger clearance increases the impact speed by increasing the free
flight time and reducing the damping effect due to hysteresis.

On the other hand, the motion will be much more irregular with continuous bouncing. As a
consequence, with the clearance rise, the normal force shows higher peaks and the detachment
between the surfaces happens more frequently, as shown on the left side of Figure 4. Furthermore,
on the right side, the trajectory of the pin center in the slider reference system is plotted. To
compare the different cases as the clearance varies, the relative X coordinate has been normalized.

Figure 4. Clearance c sensitivity: normal contact force (left); pin center trajectory (right).



Figure 5. Restitution coefficient cr sensitivity: normal contact force (left); pin center trajec-
tory (right).

Instead, the restitution coefficient, as it is possible to observe from Figure 5, slightly effects the
oscillation frequency while has a strong influence on the oscillation amplitude.

In this particular configuration, since the effects are decoupled, the normal force, illustrated in
Figure 6, is not influenced by the friction force. Different friction models have been tested and
their value are plotted versus the crank angle (Figure 7-8). Even though the different friction
formulations provide similar trend, their magnitude are quite different between one and other.
In particular, Misharin and Drozdov models produce extremely low values of friction coefficient
during high sliding speed phases and give feasible values only when the sliding speed lowers (i.e
pin motion inversion at ϑcrank = π

2 + kπ with k = 1,2, ...,n). Furthermore, it should be noted
that only the Leach and Kelley model has a distinctive trend. This fact can be explained with
the strong load dependence that these authors propose in their empirical formulation causing the
friction coefficient to assume the normal force trend instead of showing a predominant sliding
speed effect.

Referring to the Figure 9 the trend of the driving torque is displayed in three cases: ideal case, non-
ideal kinematic joint without friction, and with friction using Benedict & Kelley model. In the non-
ideal joint case, the torque exhibits a dynamic behavior due to impacts that occur on the contact
surfaces. Such events happen only during the transition between the acceleration and deceleration

Figure 6. Comparison of normal contact force in non-ideal joint with reaction force of ideal
joint.



Figure 7. Friction coefficient for different semi-empirical formulations.

Figure 8. Friction force for different semi-empirical formulations.

phase of the slider, where a free-flight period of the pin and a change in the contact profile of
the slot are observed. Conversely, the transition between the deceleration and acceleration phase
occurs continuously, and no sudden variations of the torque are observed. Having said that, for a
constant crank speed, two phases can be observed in a crank rotation period of 180 degrees. In the
first phase (i.e. between 0 and 90 degrees), the slider accelerates and therefore the driving torque is
positive; the ideal case and the contact case without friction have little difference, while the driving
torque slightly increases when friction is taken into account. In the second phase (i.e between 90

Figure 9. Comparison of driving torque between ideal and non-ideal cases.



and 180 degrees) the slider decelerates, so the driving torque is negative. In this case, the friction
force tends to slow down the slider as a result of the retrograde motion that is observed during this
phase. Because of this, the driving torque in the lubricated case is lower in absolute terms than
the dry without friction one. For any considered condition the computation time, using Matlab
to perform the multibody simulation, is reported in Table 4. A remarkable increase of run-time
can be observed with the introduction of a non-ideal joint. In contrast, the introduction of friction
models has not a relevant consequence on the run-time itself and .

Ideal joint Dry without friction Dry with constant friction

Runtime [s] 0.5 4.3 4.3

Lubricated models
Leach Benedict O’Donoguhue Askwith Block Drozdov Misharin

Runtime [s] 5.0 5.0 5.4 5.2 5.1 4.8 4.7

Table 4. Computation time (average on 10 runs) to solve 4 full crank rotation with processor
Intel I7-9750H, 2.60 GHz

6 CONCLUSIONS
In this work, semi-empirical tools for embedding friction into non stationary mechanical systems
with unilateral contacts under sliding and rolling conditions have been suggested. These formula-
tions are applied within multibody simulations where non-ideal kinematic pairs with clearance are
present, and their applicability for calculating the friction force is demonstrated. These formula-
tions are derived for the contact between gear teeth and are generally valid models for conditions
of partial elastohydrodynamic lubrication. Therefore, a scotch-yoke mechanism is chosen as the
linkage to be tested, in which the contact between the pin and the slot is counterformal. From
the results, it can be concluded that the Benedict & Kelley, O’Donoghue & Cameron, Askwith
et al. and Block models are consistent and show comparable trends. Conversely, the Leach &
Kelley model exhibits a significant dependence on the load. Lastly, the Drozdov and Misharin
models return very low friction coefficients for high sliding velocities. Using these models in
multibody simulations, the computational cost does not significantly increase compared to impos-
ing a constant friction coefficient. Another advantage of these models is that the system exhibits
a non-stiff behavior, unlike hydrodynamic models where adjusting simulation parameters is nec-
essary to avoid numerical errors. In conclusion, the analytical comparisons performed here and
all the observations reported are specific to the situation under study and may not apply to other
situations.
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