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ABSTRACT

We describe a software framework and a hardware platform used in tandem for the
design and analysis of robot autonomy algorithms in simulation and reality. The soft-
ware, which is open source, containerized, and operating system (OS) independent,
has three main components: a ROS 2 interface to a vehicle simulation framework
(Chrono), which provides high-fidelity wheeled/tracked vehicle and sensor simula-
tion; a basic ROS 2-based autonomy stack for algorithm design and testing; and, a
development ecosystem which enables visualization, and hardware-in-the-loop exper-
imentation in perception, state estimation, path planning, and controls. The accom-
panying hardware platform is a 1/6th scale vehicle augmented with reconfigurable
mountings for computing, sensing, and tracking. Its purpose is to allow algorithms
and sensor configurations to be physically tested and improved. Since this vehicle
platform has a digital twin within the simulation environment, one can test and com-
pare the same algorithms and autonomy stack in simulation and reality. This platform
has been built with an eye towards characterizing and managing the simulation-to-
reality gap. Herein, we describe how this platform is set up, deployed, and used to
improve autonomy for mobility applications.
Keywords: High-fidelity Simulation, Robotics, Sim2real Gap, Robot sensing sys-
tems

1 INTRODUCTION
1.1 Motivation
This contribution is concerned with the idea of using simulation to facilitate the task of devel-
oping algorithms that improve the autonomy of wheeled and tracked robots operating on rigid
or deformable terrains. The value proposition is tied to the cost-effective manner in which data
can be generated in simulation as well as to the ease and safety with which candidate solutions
can be tested and iterated upon. Using simulation in robotics requires a dynamics engine and
a model. Should one make the necessary investment to understand both how the simulator and
model should be configured, simulation provides insights that are difficult to obtain in physical
testing, e.g., complete state information and quantitative insights about the interaction between the
robot and environment it operates in. Unfortunately, these insights do not always lead to decisions
that work well in reality due to the simulation-to-reality gap [1]. How to close this sim-to-real
gap remains an open problem, and solutions have been proposed that include randomizing the



Figure 1: 1/6th scale autonomous vehicle (V-1) showing 3D printed reconfigurable mountings and
support of camera, imu/gnss, and Jetson AGX, the later running the autonomy stack.

experience of the robot inside the simulator [2, 3], using adversarial learning to capture unknown
components of the model via ghost external perturbations in an adversarial reinforcement learning
framework [4], using ensembles of models [5], using a mix of simulation-generated and real-world
data to train robots [6, 7], etc.

Despite these and other similarly valuable contributions, the community lacks an objective un-
derstanding of what exactly produces the sim-to-real gap. Our contribution is motivated by this
observation and inspired by the belief that an open source autonomy research testbed can be a
catalyst for research in two areas: improvement of algorithms for autonomy in mobility; and un-
derstanding and mitigating the sim-to-real gap. To that end, we describe herein an infrastructure,
i.e., a physical and software platform, that allows one to experiment with an autonomy algorithm,
e.g. a sensor-fusion approach, and have the opportunity to do so first in simulation and then quickly
on the actual robot. The principle is to have one ROS 2 [8] autonomy stack that uses the same col-
lection of perception, state estimation, planning, and control algorithms both in simulation and
in the real world. This can enable one to perform controlled tests to understand and evaluate the
performance of the algorithms.

1.2 Contribution
Our contribution is twofold. First, we established an autonomy development environment (called
ART, from “autonomy research testbed”) and an accompanying hardware platform (called V-1, for
Vehicle 1) that in tandem facilitate two types of technical pursuits: research into algorithms for
autonomy in mobility, in the context of wheeled and tracked vehicles; and quantitative characteri-
zation of the sim-to-real gap in robotics. Second, we developed an autonomy toolkit (ATK) which
is a set of command line tools for building the container system that underpins ART.

The autonomy research testbed is containerized to provide an OS agnostic platform that fosters
collaboration and accelerates the research effort since it: 1) mitigates the startup time for setting
up an autonomy stack by providing its bridges and interfaces to other system components, e.g.,
sensors and bridge to simulation; 2) abstracts the components of the autonomy stack thus enabling
researchers to quickly replace the algorithm(s) it embeds; 3) makes available a proven simulation
environment for tracked/wheeled vehicles, operating on/off-road conditions by allowing commu-
nication with Chrono [9]; and, 4) leverages a 1/6th scale vehicle for real world testing that anchors
the algorithm validation exercises as well as the sim-to-real inquiry efforts. The hardware com-
ponent of V-1 (the 1/6th scale vehicle shown in Fig. 1) has been chosen for its topology, payload
capacity, and off-road ability. In term of its topology, the suspension and steering mechanism
closely mirror those of a full-size vehicle. Finally, with a wider wheel base and tire format, the



vehicle can operate in off-road conditions.

From a high vantage point, our main accomplishment is that a basic autonomy stack has been set
up and Docker-containerized. It can be used either with the associated vehicle, to test autonomy
algorithms, or in a simulator using the Chrono digital twin. This is the core of ART. Additionally,
ATK provides the tools to build the ART ecosystem and collect, visualize, and analyze data coming
from ART, which others can leverage for custom containerized environments. ART and ATK allow
one to (a) carry out research in the sim-to-real gap; (b) generate data for data-driven solutions in
robotics; and (c) improve autonomy algorithms (perception, state estimation, planning, controls)
in plug-and-play fashion by working exclusively on the V-1 vehicle, or by combining physical
testing and physics-based simulation. The simulator which ART leverages, has the following
features: easy wheeled/tracked vehicle model set up via templates [10]; sensor simulation [11];
terradynamics support [12, 13]; support for multiple agents [14]; Python bindings [15].

The subsequent portions of the contribution are organized as follows. To contextualize this contri-
bution, we provide next an overview of similar community efforts. Section 2 highlights the con-
tainer build tools associated with this project. Section 3 describes the autonomy research testbed
by outlining the autonomy stack and its structure, the bridge to the simulator [16], the companion
vehicle platform, and its digital twin. This information, along with the online documentation ref-
erenced herein should be sufficient for an interesting party to replicate and deploy V-1 at a modest
cost should one have access to a 3D printer.

1.3 State of the Art
MuSHR [17], an open-source race-car project, comes closest in spirit to ART. For simulation,
MuSHR draws on Gazebo [18]. It uses a 1/10th form-factor vehicle, has one 2D lidar sensor, one
stereo camera, and a Jetson Nano processor. MuSHR is ROS-based and runs off a Linux Ubuntu
distribution. It has comprehensive documentation and has been used in classes at University of
Washington. Another well known platform is MIT RACECAR [19, 20]. It uses a 1/10th form
factor, ZED stereo camera, 2D lidar. The software stack, which is ROS-anchored, is provided as
a Docker image. Simulation support comes via Gazebo. MuSHR and RACECAR share the same
pros and cons – open source platform, ROS-backend, proven software stack; and, respectively,
small form factor, indoors use, software and hardware infrastructure relatively difficult to expand
beyond the current vehicles.

Karr [21] is designed to only use a depth camera, and requires walls on either side of the car to
guide the vehicle along the path. It is a 1/10th form factor, uses NVIDIA’s Jetson TX1 chip that
comes with a developer kit targeting visual computing running in a pre-flashed Linux environment.
Karr relies on ROS and trains a neural net using Keras with a Theano backend using real-life
videos. There is no simulator bundled, yet Carla [22] is mentioned as a next logical step towards
the goal of training in simulation.

Donkey Car [23] is a popular hobbyist project, which is concerned with racing small, 1/16th or
1/10th, format vehicles that mostly draw on Raspberry Pi 3b+ and a wide-angle camera. It can
be fitted with Jetson Nano or TX2 with access to the NVIDIA developer kit and its ecosystem.
Donkeycar uses Python for controlling the car, and Unity [24] as a simulator, the latter building
off the NVIDIA PhysX simulation engine [25]. The Donkeycar infrastructure is popular, see, for
instance [26] for an offshoot. One project that stands out in terms of form factor is PARV/MPAD;
at 1/8th is larger than all the rest, but smaller than the platform discussed herein. While the
project has modest goals on the autonomy component, it is remarkable in that it is a 3D printed
hardware platform [27] that comes with a basic autonomy stack called MPAD (Modular Package
for Autonomous Driving), which is Python based, uses OpenCV with a Rasberry Pi camera, has
Ultrasonic sensors, an IMU, and runs off a Rasberry Pi 4 [28]. Vehicle control draws on an
Arduino Mega. A Raspberry Pi-based solution with Arduino for vehicle control is described in
[29]; it is small form factor and works by neural-net-enabled image recognition in conjunction with



scaled-down traffic signs (data not collected in simulation, neural net trained with data collected
by driving car around manually). Another hobbyist solution is PiCar of SunFounder [30], which
at less than 1/10th format is an inexpensive platform that uses Raspberry Pi 4 and a wide-angle
USB camera, with controls designed in EzBlock [31], an open platform for building intro-level
electronic projects.

All solutions mentioned above are different in at least one of the following four aspects: (1) project
breadth of scope; (2) scale and flexibility of hardware platform; (3) degree to which project em-
braces and promotes a simulation component; (4) documentation and support. For (1), ART is
a researcher’s (instead of hobbyist’s) platform that uses, but is not limited to, the vehicle shown
in Fig. 1. Of the solutions mentioned above, only MuSHR has a similar research purpose. For
(2), we adopted a larger form factor since the interest is on- and off-road mobility. Moreover, the
goal is enabling sensor fusion, experimenting with various sensor packages, etc., which requires
additional payload capacity. For (3), this group is interested in simulation first and foremost, and
the vehicle is not the goal, but rather a means to an end. The ends are enabling research in au-
tonomy for mobility and better understanding and management of the sim-to-real gap. For (4), a
documentation infrastructure details our solution [32].

2 AUTONOMY TOOLKIT
The objective of ATK is to provide a modular and portable framework for developing, testing,
and deploying autonomous algorithms in simulation and reality. This toolkit is a Python pack-
age that leverages Docker by wrapping Docker Compose to build and deploy a multi-container
system specifically designed for autonomy research. ATK wraps Docker Compose in that all of
the functionality of Compose is still available; however, ATK also provides utilities, defaults,
documentation, and examples specifically for applications relating to autonomous algorithm de-
velopment. ATK is open-source, available on GitHub, and has been made available through the
Python Package Index (PyPI) [33].

A requirement of this toolkit is to be OS portable. To that end, a containerized system, set up to
leverage Docker, is separated into “services” that can be combined to produce a container network
that supports complex interactions across a variety of projects. To expedite the deployment process
to the physical hardware under test, the same containerized system is used. The Docker interface,
especially on Linux systems, is extremely lightweight and introduces negligible overhead for most
applications. The development framework is built into two main components: the ATK Python
package and the Docker containers themselves. The ATK package, which helps generate the
containers, is described in Section 2.1; the container system is described in Section 2.2.

2.1 autonomy-toolkit Package
The package which generates the container system is, in its simplest form, a wrapper of Docker
Compose. Called autonomy-toolkit, or ATK for short, this Python package is publicly available
and provides a cross-platform command-line interface. ATK leverages the multi-container archi-
tecture to provide optional, extensible, and customizable containers to facilitate development of
AVs that greatly increases the generality of the development workflow. The only non-Python re-
quirement for the autonomy-toolkit is Docker. With Docker available, the toolkit can be installed
through typical python mechanisms like pip. ATK works as follows: YAML configuration files
are combined with defaults provided through ATK into a configuration file readable by Docker
Compose. From there, ATK simply makes calls to Docker Compose based on the resulting output.
All defaults provided through ATK are customizable. Furthermore, the generic Docker Compose
commands can be used in conjunction with the generated config file, if desired, without ATK.

ATK was built with modularity and expandability in mind. This means the functionality of the
toolkit itself is agnostic of the autonomy stack it is used for, i.e. it is not tied to ART. Individ-
ual hardware platforms and control stacks may implement their own containers and customize the



(a) ART environment, setup used on the physical ve-
hicle. (b) ART environment, setup used for simulation.

Figure 2: ART environment setup

default configurations, provided they follow the few requirements outlined in the documentation
[32]. As ATK is agnostic of the hardware platform and usage, it can also be used to generate cus-
tom containers outside the original scope of the toolkit. For instance, the simulation container to be
discussed further in Section 3.1 leverages ATK to create its own container for Chrono. Other com-
mon use cases could include a container for training data or an HD map, a deployment container
for specific hardware, an automated testing environment, etc.

2.2 Container System
Distributed with the ATK package itself are many predefined and customizable utilities that are
used to generate the images and containers. In general, there are two primary services that come
directly with the ATK package: dev and vnc.

dev: This is the primary component that is used for algorithm development. It is defined by a
custom Dockerfile which utilizes build arguments specified through a configuration file to generate
an image specific to the project being developed. By default, dev builds on the ROS 2 Galactic
image, the most recent ROS 2 distribution at the time of writing. By default, dev is assumed to be
the primary container and, when launched, initializes a shell environment. The directory that holds
the configuration file is mounted into the container for data persistence upon container termination.
Other utilities and configuration are performed to further enhance the generality of the toolkit and
remove OS dependence.

vnc: To make cross-platform visualization easier, we have created a vnc container which requires
no host setup which allows the user to visualize their applications. The implemented solution
leverages Virtual Network Computing (VNC) within a separate service, making its usage optional.
To use VNC visualization, dev (or any other container run using ATK) must simply attach to the
same network and configure its DISPLAY variable to that of the vnc hostname. NoVNC, a browser
based VNC client, can then be used to view any displayed windows from dev from any internet
browser.

Note that a networking layer is set up to facilitate distributed container interaction. This feature
supports hardware in the loop experiments, where the simulation container is deployed on separate
hardware from the autonomy stack. To facilitate this, we leverage Docker and Docker Compose
networking features. When services are deployed on the same system, the default network config-
urations are used. However, when the services are deployed in a distributed fashion, the network
is customized to expose the necessary ports to facilitate inter-computer communication.

Since the environment is containerized, it can be deployed to a physical vehicle, with optional
hardware-specific optimizations. While ATK is general purpose, an example of the containerized
system can be seen in Figs. 2a and 2b, which illustrate the services when running on the real
vehicle vs. simulation, respectively.



3 AUTONOMY RESEARCH TESTBED
3.1 Simulation
One of the motivations behind this effort was the use of simulation as a means of designing and
testing autonomous algorithms. To support this, a bridge to Chrono [16] was developed to allow
direct integration within the containerized system for ART. The bridge, along with the custom
Chrono container, is an example of the modular environment produced by ATK. Not only can we
test in Chrono on a workstation, but this setup paired with ATK allows us to test with hardware in
the loop, running the simulation on a workstation while running the autonomy stack on the Jetson.

The Chrono ROS Bridge is a ROS 2 package that integrates with Chrono to feed messages to and
from the simulation scenarios. The interface is built on JSON messages so users can send any data
between ROS and Chrono. Generic publishers and subscribers (a feature of ROS 2) are leveraged
to allow for user defined message types and topic names to be used. The package, written in C++,
is open source and available under a BSD3 license.

On the Chrono side, the bridge builds directly on core functionality available through the utility
class ChSocket. Additional hooks were provided that wrap the JSON generation from user code.
This was done to facilitate Python wrapping with PyChrono, the Python bindings to the C++
Chrono API. This allows the researchers to leverage the rapid development process enabled by
Python. Additionally, to allow custom message types to be sent between ROS and Chrono, custom
functors may be implemented to generate and/or parse custom message formats.

3.2 Autonomy Stack
The autonomy stack developed for ART is built on top of ROS 2 and includes basic implementa-
tions of autonomy algorithms to enable autonomy experiments in simulation and reality. The stack
is basic; there is nothing particularly novel in its implementation. It utilizes publicly available al-
gorithms and packages typically shipped with ROS 2. This is because the focus of ART is not on
the autonomy stack itself, but the ability to compare algorithms between sim and reality. Against
this backdrop, the perception algorithm is a custom trained instance of Faster-RCNN [34] built on
a MobileNetV3 [35] network. MobileNet is intended for mobile phone CPUs, but was adopted for
ART considering the limited compute power available on the vehicle. For the example used later
in this contribution, in which a vehicle navigates down a lane set up with cones, the perception
algorithm was trained using both simulated and real images. Based on the bounding box output
from Faster-RCNN, 3D cone positions are generated at each timestep and a simple planner and
controller are used to keep the vehicle on the path defined by the cones. To control the car, throttle,
braking, and steering inputs are communicated to the car via an Arduino processor.

3.3 Vehicle Chassis
The vehicle platform is built upon a 1/6th scale remote controlled car. With a 47 cm wheel base
and a 34 cm track width, the vehicle is large enough to carry multiple cameras and sensors. This
is critical since research into the difference between simulation and reality when applied to sensor
simulation must perform analysis on the specific sensors of interest in full-scale applications. The
base vehicle includes a double wishbone independent suspension at the front and rear. The kine-
matics of this suspension allow for use in off-road mobility. For actuation, the vehicle includes a
1300 KV brushless motor and a 15 kg-cm servo for steering which we upgraded to a 25 kg-cm
servo for durability. The servo controls the steering through a Pitman arm steering mechanism.

3.4 Electronic Hardware
The base RC car was augmented to allow for direct control of the steering and throttle via an
onboard computer. The modifications were minimal to allow for duplication of the system. First,
the dual-battery setup powering the electronic speed controller (ESC) was reduced to a single
two-cell LiPo battery, which lowers the top speed of the vehicle to something more manageable.



The use of a dedicated battery for electronics ensures that voltage spikes and drops induced by
the motor do not affect any sensitive computer or sensing electronics. To prevent floating voltage
issues, all ground connections are wired to a common ground rail. A power distribution and control
wiring diagram along with a bill of material are provided with the hardware documentation online
[32].

The computer used on the ART vehicle is a Jetson Xavier AGX, although other compute platforms
could also be used. The design of the vehicle and development environment are compute system
agnostic as we’ve used a Jetson Xavier AGX and Orin to run the autonomy stack. To facilitate
this, direct control of the servo and ESC is performed through PWM signals from an Arduino
chip. On the vehicle herein, an Arduino Uno was leveraged, but an Arduino Nano is considered in
the documentation. The Arduino is used exclusively as a device driver, performing no autonomy.
The ART vehicle is equipped with a USB camera and a VLP-16 lidar. Further sensors can be
mounted on the vehicle to facilitate additional research needs.

3.5 Mounting, Expansion, and Reconfigurability
The ability to reconfigure the vehicle platform was a high priority given the “research-platform
mission” this solution must fulfill. To that end, all mounting components were designed to be 3D
printed, with a base plate for electronics that could be laser cut or 3D printed. The final setup
is shown in Fig. 1 with the electronics mounted above the motor and ESC on the base RC car.
While most electronics are mounted directly to the electronics board, some of the sensors require
custom mounts. The camera is located in the front of the vehicle above the bumper to provide
an unobstructed view. The imu/gnss sensor is mounted above the back wheels, and there is an
optional custom lidar mount which provides an unobstructed view of the surroundings from above
the Jetson computer. Lastly in addition to electronics and sensors, a motion capture tracking
system can be seen mounted to the vehicle in Fig. 1 using some of the holes in the components
board. This allows for millimeter level tracking when used in combination with an OptiTrack
Motion Capture system.

3.6 Vehicle Digital Twin
The vehicle described in this contribution has a digital counterpart modeled in Chrono using
Chrono::Vehicle [10] and Chrono::Sensor [11]. The vehicle model is implemented with a dou-
ble wishbone suspension and a linear spring-damper with parameters estimated from the vehicle
mass. The Chrono model of the car is rendered in Fig. 3 using Chrono::Sensor and highlights the
mesh representation of the car along with the double wishbone configuration.

(a) Front view of ART model. (b) ISO view of ART model.

Figure 3: Chrono::Vehicle model of ART as visualized with Chrono::Sensor.

The steering model uses the Chrono::Vehicle Pitman arm template, allowing actuation of the steer-
ing arm. The maximum steering angle was calibrated from a set of minimum radius turn tests using
motion tracking. The motor model is a simple linear torque-speed curve, with decreasing power



with motor speed. It also includes a Motor losses curve to model the motors initial resistance and
loss as the RPM increases. These parameters were calibrated using Motion Capture data.

4 DEMONSTRATION
To demonstrate ART at work, a path of cones was set up in our motion tracking lab. The cone
locations were recorded and injected into a simulation of the same motion. The vehicle then drove
along the path in simulation and reality. Images of this setup from a similar location for real and
sim are provided in Fig. 4, which shows the same cone paths and the vehicle in a similar location
on the path. To navigate, the vehicle exclusively uses its front facing camera. This demonstration
is included in the supporting video and can be found online [36].

(a) Real setup (b) Simulated setup

Figure 4: Real and simulated scenarios using the same cone locations measured by a motion
capture system.

To further demonstrate the algorithms used by ART, we show examples of the intermediate output
from the perception and planning stages. Perception results from simulation and reality are shown
in Fig. 5, and results from the planning stage are shown in Fig. 6.

(a) Perception on a simulated image (b) Perception on a real image

Figure 5: Intermediate perception results from the autonomy stack shown for simulation and real-
ity. Overlaid on the image are the detected bounding boxes, classes, confidence, and estimated 3D
location relative to the vehicle.

5 CONCLUSION AND FUTURE WORK
This brief outlines an open-source Autonomy Research Testbed (ART) whose purpose is twofold:
conduct research in autonomy for wheeled vehicles in on/off-road conditions; and investigate the
sim-to-real gap in robotics – understand what causes it, and how it can be controlled. Looking
ahead, we will equip V-1 with additional sensors to test their use both in autonomy algorithms and
to help close the sim to real gap in Chrono. Utilizing the available motion capture system and its
millimeter position tracking, a richer family of sensors will allow us to investigate better sensor
models, as well as perception, state estimation, planning, and controls algorithms, and understand
how inaccuracy in different components of the autonomy stack propagate downstream and cause



Figure 6: An example of intermediate results from the planning stage. Shown here are the locations
of the cones in 2D (circles), the estimated curve of the boundary, and the target point used for
control (blue).

the sim-to-real gap. With an increased understanding of the sensors and improved sensor models
we will be able to take V-1 into off-road conditions to further build our understanding of the
vehicle.

Finally, ATK can be used to facilitate autonomy algorithm development by allowing researchers
to configure a custom set of containers to host their development, deployment, simulation, and
visualization needs. For instance, this platform is assisting UW-Madison students in their SAE-
sponsored AutoDrive Challenge II, and is currently being used in our lab to improve the Chrono
sensor package.
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