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ABSTRACT

In this paper a novel approach is developed to compensate for inaccuracies caused
by direct feedthrough in single-rate explicit co-simulated systems. The method is
twofold. First, a time delay is added to the interface variables of the co-simulation in
order to break the algebraic loop caused by direct feedthrough. Second, this time delay
is corrected by an iterative learning controller (ILC) that learns from previously exe-
cuted simulation runs of the co-simulated system. The ILC contains an exact model
of the time delayed co-simulation manager, but requires no prior knowledge on the
dynamics of the subsystems. The method has proven to produce perfect results for
examples where the simulation model complies with the standing assumption of us-
ing a time delay. For examples that rely on different approximation schemes to break
the algebraic loop the developed approach gives good results in practice, but further
investigation is required.
Keywords: Explicit co-simulation, Iterative learning control, Hybrid-physical-virtual
testing.

1 INTRODUCTION
In industry, the product development methodology is evolving from a test-centric to a model-based
development (MBD) approach. By simulating the parts of the system that are not yet physically
available, MBD allows to frontload physical testing earlier in the development cycle of a product.
Multiple product variants can be tested, flaws and defects can be identified early on, and high-
risk real-life situations can be tested in a safe environment. These possibilities enable the MBD
approach to reduce the product development time, leading to cost reduction and higher quality
products. The technology behind the curtains of MBD is called (real-time) hybrid-physical-virtual
testing (HPVT). It enables full system testing using physical and digital twins in R&D laborato-
ries. HPVT relies on recent technical advancements in model-based techniques such as hybrid
simulation, hardware-in-the-loop testing, and co-simulation.
The latter technique, co-simulation, constitutes an intuitive approach to model large and complex
systems that consider multiple physical phenomena such as thermic, hydraulic, electronic and me-
chanic effects. The full system is divided into smaller subsystems that can be solved separately,
at their own pace. Each subsystem can use a different solver to perform their integrations, in
contrast to a monolithic simulation where a numerical solution of the complete model is obtained
using a single solver. The subsystems only exchange information at discrete time instants called
the communication points. In between communication points, the subsystems integrate their dy-
namics independently. The interval between these time instants is called the macro time step.



The co-simulation manager manages the discrete-time communication between the subsystems
and exchanges the coupling variables, the subsystem inputs and outputs, at each communica-
tion point. There are many possible scheduling implementations for the co-simulation manager,
which can be grouped in two main categories: implicit and explicit co-simulation methods. Im-
plicit co-simulation methods solve the co-simulated problem in an iterative manner, by allowing
to re-calculate a macro time step until a certain convergence criterion has been achieved. Explicit
or non-iterative co-simulation methods do not allow to re-calculate time steps. Hence, implicit
methods have better stability properties [1], [2], but they are infeasible to use when some sub-
systems are physical components or when there is a limitation on the available time to perform
the computations, as is often the case in real-time applications. In contrast, explicit co-simulation
methods are more likely to become unstable. These setups often need to resort to approximating
or extrapolating the unknown inputs which can cause accuracy loss and stability issues [3]. Accu-
racy and stability are also affected by other co-simulation configuration parameters, which include
the choice of coupling variables [2] and the step size of the co-simulation manager. Macro step
sizes are often reduced or adapted either during runtime [4] or offline [5], in order to improve the
stability of a co-simulation. However, variable step sizes cannot be applied to co-simulations that
include physical subsystems, since they require a fixed step size that is defined by the actuation
dynamics. The numerical integration of the continuous time dynamics introduces time delays and
discontinuities, leading to a discretisation error in the simulation. However, the error introduced by
dividing and coupling the subsystems in a co-simulation, also called the coupling error, is the main
influence on the inaccuracy and stability issues in a co-simulation. That is why many researchers
such as [4, 6, 7, 8] mainly focus on reducing the coupling error, and we will follow this example.
In the remainder of this paper we assume that the discretisation error is negligible compared to the
coupling error in the co-simulation. If no information about the subsystem states is given, correct-
ing for the coupling error is only possible by acting on the coupling variables. By representing the
co-simulated system in the frequency domain as a sampled-data interconnection, the authors of
[6] have observed that the sample-hold process, i.e., the extrapolation, is the main error source. To
reduce this extrapolation error they have implemented a H∞ control algorithm with compensation
and smoothing at the interface. Another direction is aiming to preserve the mechanical energy
of a co-simulated system, for example with passivity control approaches. In [9] an energy-leak
monitoring and correction method has been introduced that modifies the coupling variables to re-
move the residual energy, but knowledge of subsystem internals is required. The authors of [7]
add a nearly energy-preserving coupling element (NEPCE) to the co-simulation to compensate for
coupling errors caused by extrapolation. Exact compensation is not possible since this requires
a non-causal correction element. The energy-conservation-based co-simulation (ECCO) method
defined in [4] introduces the concept of residual power in a co-simulation to provide error estima-
tion and adapt the step size of the co-simulation. This residual power concept is used in [10] to
develop an adaptive force correction that can be applied to explicit (real-time) co-simulation. The
correction force calculation requires defining a value for weighting component µ that depends on
the co-simulation coupling strategy and the system properties.

In this paper we propose a novel, two-stage approach to correct for coupling errors in single-rate
explicit co-simulation. First, instead of using an extrapolation method inside a subsystem to ap-
proximate unknown inputs, we choose to add a time delay to the outputs of this subsystem, which
is easier to correct. Second, we design an iterative learning control (ILC) law that counteracts this
time delay, by repeating the co-simulation multiple times and learning from the tracking error (the
time delay) in the previous run. Since we target hybrid-physical-virtual applications that require
real-time execution, we only consider explicit co-simulation with a fixed time step. Additionally,
we assume that no information is available about the subsystem dynamics, except for the coupling
variables.
The paper is organized as follows. Section 2 explains the concept of explicit co-simulation and



discusses the example of a co-simulation where one of the subsystems has direct feedthrough.
Section 3 describes the developed twofold methodology to improve the accuracy of explicit co-
simulation: first the general principle, second a more detailed explanation for a co-simulation with
two subsystems. Results are discussed in Section 4, and Section 5 concludes on the current status
of this research and lists possible next steps.

2 EXPLICIT CO-SIMULATION
Explicit co-simulation does not allow rollback or iterating over a time step, such that each time
step is only executed once. This choice of coupling approach, together with the order in which
the subsystems evaluate their state and output at the next time step, influences the accuracy and
stability properties of the co-simulation. The co-simulation manager can schedule the subsystem
evaluations in parallel or in series. These schemes are known as Jacobi and Gauss-Seidel, re-
spectively. The latter allows each next scheduled subsystem to use the already updated coupling
variables from the previously scheduled subsystem. This way, Gauss-Seidel scheduling generally
delivers more accurate results, although this property is shown to depend on the chosen order of
subsystems [3]. This paper only considers the parallel scheduling of subsystems in single-rate
co-simulation since it allows for higher computational performance in real time.
Fig. 1 schematically presents the Jacobi scheme for a single-rate co-simulation with two linear
time-invariant (LTI) subsystems. At each macro step k, three steps are executed: In the first step,

Figure 1: Single-step, single-rate Jacobi co-simulation scheme

the two subsystems send their outputs at time k to the manager which, in the second step, for-
wards these as the inputs to the other subsystem. In the third and final step the subsystems solve
the state-space equations for the next time step k+1. Equation (1) prescribes the LTI state-space
representation of Subsystem 1.

x1(k+1) = A1 · x1(k)+B1 ·u1(k)

y1(k+1) =C1 · x1(k+1)+D1 ·u1(k+1)
(1)

In some co-simulation cases, depending on the chosen coupling variables, the output at time k+1
cannot be calculated since u(k + 1) is not available yet. Hence, an approximation ũ(k + 1) is
necessary. Some example scenarios where this problem occurs are implicit integration formulas,
multi-rate co-simulation schemes, nonlinear subsystems or subsystems with direct feedthrough.
We will only discuss the latter in detail. We say that a subsystem has direct feedthrough when its
outputs directly, instantaneously depend on its inputs. This might result in an algebraic loop which
can only be solved iteratively or by approximating the unknown inputs, shown in Equation (2).

y1(k+1) =C1 · x1(k+1)+D1 · ũ1(k+1) (2)

Extrapolation techniques are often used to approximate the unknown input at time k+1. The most
frequent approach is the zero order hold extrapolation (ZOH), that is, ũ(k+1) = u(k), where the
last evaluated value at time k is used to calculate the output at time k+1.

y1(k+1) =C1 · x1(k+1)+D1 ·u1(k) (3)



ZOH extrapolation helps to stabilize the co-simulation when direct feedthrough is present, but
generally has a negative impact on its accuracy. Higher extrapolation orders will reduce the cou-
pling error, but can have other effects on stability and robustness, because of a higher sensitivity to
discontinuities [2]. Other methods, such as least squares approximation and polynomial approxi-
mation methods can be used to extrapolate the unknown inputs as well, without prior knowledge
on the internal dynamics [11].
To summarize this section, the co-simulation coupling error depends on the magnitude of the time
step, the chosen coupling variables, the co-simulation scheduling scheme and the extrapolation
method. Reducing the coupling error is the goal of this paper and the following section, Section 3,
will explain the methodology we propose for this purpose.

3 OFFLINE LEARNING CONTROL APPLIED TO CO-SIMULATION
Complete elimination of the coupling error in a co-simulation is very challenging, since in most
cases the available information about the subsystems is insufficient. This paper assumes that the
subsystems do not provide information about their states, such that only the coupling variables can
be used to calculate and apply the coupling error correction. Single-rate explicit co-simulation is
considered with Jacobi scheduling and a fixed macro time step. At least one of the subsystems has
direct feedthrough.

3.1 General Methodology
The methodology we propose to correct for coupling errors in a single-rate explicit co-simulation
is twofold. For the sake of brevity, without loss of generality, the methodology is explained using a
co-simulation with two subsystems, where the first one has direct feedthrough, such that its outputs
directly depend on its inputs. The first key contribution lies in the iterative nature of our approach,
consisting in performing a sequence of consecutive co-simulation runs. A correction is added to
the co-simulation after every run, based on the information collected during the run. This yields a
correction approach that does not require implicit methods, adapting the communication step size,
or modifying interface variables during runtime, rendering it compatible with real-time execution.
This iterative control method, referred to as Iterative Learning Control (ILC) [12], is well known
in control engineering. The goal of ILC is to iteratively learn a control input from previous test
runs to improve the tracking of a specified reference. The tracking error and control inputs of
the entire test are memorized and fed back offline into the ILC algorithm to improve the control
input for the next test run. In the case of co-simulation, however, a reference is not available,
because the analytic and the monolithic (numerical) solutions, which could be used to determine
the correctness of co-simulation results, are not available in most applications of interest. As a
consequence, appropriate assumptions have to be made to provide a valid reference for the ILC in
co-simulation experiments.

(a) Using extrapolation (b) Using a time delay

Figure 2: Control loops used to represent a co-simulation environment with an algebraic loop

This is actually the second part of the proposed approach: instead of using an extrapolation method



as shown in Fig. 1a, the co-simulation manager delays the output of the subsystem with direct
feedthrough with one time step, as shown in Fig. 1b. This is because the extrapolation used in
Equation (2) generates an approximation of the output of the subsystem with direct feedthrough
which cannot be further corrected if the state of this subsystem is not available. That is why we
prefer to add a time delay to the output of this subsystem, as given in Equation (4).

x1(k+1) = A1 · x1(k)+B1 ·u1(k)

y1(k+1) =C1 · x1(k)+D1 ·u1(k)
(4)

Because this delay leads to a larger error in the uncorrected co-simulation, this approach may
seem counterintuitive at first sight. However, as we will argue next, the resulting system is easier to
correct with an ILC scheme. When an output is time-delayed, its desired value, which will become
the ILC reference, is the output without this delay. This means that we need a time prediction of
one time step. Put in other words, we need a non-causal controller. It is precisely in this type
of situation where we can fully exploit the strengths of ILC. Since the ILC algorithm memorizes
control inputs and outputs from the previous run, these can be shifted ahead in time, giving insight
into future time steps. As such, the ILC can accurately compensate the addition of a delay to a
subsystem during the next run. If, instead, the co-simulation is using an extrapolation method, for
example ZOH extrapolation, the exact subsystem output is not available anymore as a reference
signal for the ILC scheme. From ILC theory point-of-view, the sequence of co-simulations will
still converge to a zero tracking error, albeit to a wrong reference. Hence, it is not very suitable
in the considered application. Calculating another ILC reference that exactly compensates for the
ZOH error is generally not possible, since the subsystem internals are not accessible.

3.2 Iterative Learning Control for a Co-simulation with Two Subsystems
In order to apply the offline learning principle to a co-simulated problem with two subsystems,
we start from a standard feedforward control scheme, as given in [12]. The goal of feedforward
control is to track a given reference as closely as possible, with the feedforward control signal
compensating for the dynamics that cause the tracking error. Iterative learning control is a discrete-
time feedforward control technique that learns from previously executed iterations, allowing for
feedback in the iteration domain. Therefore, the formulas we state in the remainder of the paper
are all given at a time step k for an iteration j. For our co-simulation the tracking error e j(k) is the
difference between the reference signal r j(k), which is the output of Subsystem 1 without the time
delay, and what is available as input to Subsystem 2, u j

2(k).

e j(k) = r j(k)−u j
2(k) (5)

This difference, without feedforward correction, corresponds to a time delay of one macro time
step. Hence, the plant P considered by the learning control algorithm is a time delay with transfer
function P(z) = z−1 in the discrete-frequency domain. The ILC provides a correction signal (or
control input) for the next iteration c j(k+1), which depends on the tracking error and correction
signal from the current iteration c j(k). The learning function L(q), with q the forward time-shift
operator, relates the correction signal with the tracking error. Since the plant is rather simple,
we propose to use a plant-inversion type ILC, where the learning function depends on a model
of the inverted dynamics of the plant. Now the discrete-time ILC algorithm between consecutive
iterations j and j + 1 of the co-simulation is given by c j+1(k) = c j(k) +P−1(q)e j(k). We can
make the learning function L causal by making use of qx(k)≡ x(k+1) and rewriting the previous
formulation as

c j+1(k) = c j(k)+q−1P−1(q)e j(k+1) (6)

The learning function then becomes L(q) = q−1P−1(q), which equals one.
The iterative learning control scheme applied to a co-simulation with two subsystems is visualized
in Fig. 3. It shows the closed-loop co-simulation for time step k with the ILC algorithm for iteration



Figure 3: ILC to correct for time delay in a single-rate explicit co-simulation with two subsystems

j. The blue block (ILC) contains the offline calculation of the ILC algorithm, the light green block
(S2) represents Subsystem 2, and the dark green block (S′1) represents the adapted Subsystem 1.
The latter is split up into two blocks, the first one of which represents the original dynamics of
Subsystem 1 (S1), and the second one represents the time delay (P) that is used to approximate the
unknown output of S1. It is clear that the ideal tracking reference of the ILC, which is the output
of the first subsystem without time delay, is not available in real-time. Since the ILC algorithm
is computed offline, the delayed output of Subsystem 1 can be shifted forward in time using an
inverse time delay, providing us with the ideal tracking reference for the ILC,

r j(k) = P(q)−1y j
1(k) (7)

The ILC correction signal, multiplied with the time delay, is added to the delayed output of Sub-
system 1, and the sum is applied as the input to Subsystem 2,

u j
2(k) = y j

c(k) = y j
1(k)+P(q)c j(k) (8)

Since ILC is an iterative approach, it is useful to check how the error evolves over iterations, so
as to analyse the convergence properties of the correction mechanism. A standard ILC algorithm
assumes an iteration invariant reference, while in the co-simulation this reference changes over it-
erations, since all subsystems influence each other. For an ILC algorithm with changing reference,
we need to analyse how the ILC error evolves in the iteration domain considering the fact that
Subsystems 1 and 2 form a closed-loop connection. Because of its effective characterization, we
perform this analysis in the frequency domain. Starting from the scheme in Fig. 3 we see that the
output of Subsystem 1 and its corrected output can be expressed as y j

1(z) = S1(z)S2(z)y
j
c(z) and

Equation (8) respectively. The ILC error is defined in Equation (5) as the difference between the
desired S1 output and the corrected output. Filling them in further gives

e j(z) = P−1(z)y j
1(z)− y j

c(z) = P−1(z)
(

P(z)S1(z)S2(z)y j
c(z)

)
− y j

c(z) (9)

The next step is to express the corrected S′1 output in terms of the ILC correction signal,

y j
c(z) =

P(z)
I −P(z)S1(z)S2(z)

c j(z) (10)

where I represents the identity matrix. Combining Equations (9) and (10) leads to the influence of
the ILC correction on the error:

e j(z) =
(S1(z)S2(z)− I)P(z)
I −P(z)S1(z)S2(z)

c j(z)≜ P̃(z)c j(z) (11)



The update law of the ILC gives

c j+1(z) = P(z)(c j(z)+ e j(z)) (12)

The goal is to check stability and convergence of the ILC error, over iterations, which becomes,
for iteration j+1

e j+1(z) = (1+ P̃(z)z)e j(z) (13)

since P(z) = z−1 and L(z) = zP−1(z) = 1, giving us the recursive error propagation between it-
erations. Based on the convergence and stability properties of ILC [12], we can conclude that a
sufficient condition for the ILC for a co-simulation with two subsystems, where one subsystem
contains a time delay to break the algebraic loop to be asymptotically stable and converging is

γ ≜ ∥1+ P̃(z)z∥∞ < 1 (14)

In addition, (14) also guarantees the ILC is monotonically convergent, since

∥e∞(z)− e j+1(z)∥∞ < γ∥e∞(z)− e j(z)∥∞ (15)

This derived analysis proves the theoretical convergence analysis of the ILC applied to a co-
simulation with two LTI subsystems that includes a time delay to break the algebraic loop caused
by direct feedthrough. Yet it has become clear that that the ILC convergence, as well as the con-
vergence rate depends on the dynamics of the co-simulated subsystems. In practice, subsystem
dynamics are usually not available, making it impossible to certify convergence.

4 RESULTS
To demonstrate our novel two-stage approach, we use a popular benchmark problem [10], shown
in Fig. 4: a linear oscillator composed of two masses that are connected to each other and to
the ground with ideal springs and dampers, without external excitation inputs. The subsystems
exchange force and displacement, making it a force-displacement coupling where the subsystem
with force output has direct feedthrough. The parameters of the two linear oscillator examples are
given in Table 1. The macro step size of the co-simulation is 10−3 s. The examples are run with a
simulation duration of 20 s per iteration.

Figure 4: The benchmark problem of the linear oscillator with force-displacement coupling

Table 1: Parameters of the linear oscillator examples

Example M1
[kg]

M2
[kg]

k1
[N/m]

k2
[N/m]

kc

[N/m]
c1
[Ns/m]

c2
[Ns/m]

cc

[Ns/m]
1 1 1 10 1000 100 0.1 0.1 0.1
2 1 1 10 1000 100 0 0 0

We study the ILC performance for two different scenarios: (a) when co-simulation uses a time
delay to eliminate the algebraic loop (the time delay assumption holds), and (b) when the co-
simulation uses ZOH extrapolation (the time delay assumption does not hold). We investigate how



the same control algorithm behaves in both situations, and how it compares to the residual power
method in [10] and to the uncorrected co-simulation. To verify the accuracy of the results, the co-
simulated solution is verified against its monolithic numerical counterpart using the mechanical
energy of the system as a metric. Since the ILC only tries to correct for the coupling error caused
by the time delay approximation, and not for the discretisation error, the monolithic solution is the
best achievable tracking result for the ILC. It must be noted that neither the monolithic solution
nor the mechanical energy are usually available in applications of practical interest, so they are
only used to verify the simulation results, but not as sources of information for the ILC.
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Figure 5: Convergence of the ILC error for the damped linear oscillator
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Figure 6: Convergence of the ILC error for the undamped linear oscillator

For discussing the results both undamped and damped linear oscillator examples are considered
simultaneously. Figs. 5 and 6 depict the error of the ILC for three co-simulation iterations. It-
eration 0 gives the original error that is given to the ILC, before any correction has taken place.
In iteration 1 a first ILC correction has been calculated and added to the co-simulation coupling
variables, affecting the output of that iteration. Iteration 12 shows that the ILC algorithm has
converged and the error has been reduced to zero with an accuracy of 10−7 N for both examples.
Equation (14) has been satisfied for the damped linear oscillator, while for the undamped example,
which is marginally unstable, it does not hold. In practice, for both examples, the 2-norm of the
error has been reduced to 10−7 N. The difference in force (input variable of Subsystem 2) with
the monolithic solution to the linear oscillator is plotted on Figs. 7 and 9. The left subfigure com-
pares the developed ILC approach with time delay approximation to the uncorrected co-simulation
with ZOH extrapolation, and a co-simulation with ZOH extrapolation that is corrected using the
residual power approach of [10]. The right subfigure gives a more detailed view and shows the
developed ILC approach when ZOH extrapolation is used, so the time delay assumption does not
hold. Similar plots are created for the mechanical energy of the co-simulation (Figs. 8 and 10).
These four figures (with eight plots) confirm that that the developed twofold methodology both
stabilizes the co-simulation and matches the monolithic solution with an accuracy of 10−6, con-
sidering that the subsystems are implemented as expected, that is, using a time delay to break the
algebraic loop. When the time delay assumption is not satisfied, in contrast, a perfect correction
is not possible. The ILC results in reasonably good results and an accuracy comparable to the
residual power approach is obtained. However, for this case, our two-stage approach that only



Figure 7: Comparing the input force of Subsystem 2 to the monolithic solution for the damped
linear oscillator

Figure 8: Comparing the mechanical energy to the monolithic solution for the damped linear
oscillator

Figure 9: Comparing the input force of Subsystem 2 to the monolithic solution for the undamped
linear oscillator

Figure 10: Comparing the mechanical energy to the monolithic solution for the undamped linear
oscillator



compensates for a time delay is not capable of formally guaranteeing any error reduction. More
simulation examples would be required to confirm this reasoning. The residual power approach
is non-iterative and gives good results without repeating the co-simulation, after its parameters
have been properly tuned, but is less accurate than our approach. As one can intuitively expect,
this example demonstrates that there is a trade-off between achieving highly accurate results and
having to repeat the co-simulation several times.

5 CONCLUSIONS
Coupling errors in a co-simulation caused by direct feedtrough, nonlinearities or multi-rate simu-
lation can result in inaccurate and possibly unstable simulation results. In the quest of eliminating
these unwanted effects, this paper has investigated a novel twofold approach to remove the errors
coming from approximating the unknown inputs in single-rate explicit co-simulation examples.
First, a time delay is added to the subsystems with direct feedthrough instead of using an ex-
trapolation method. Second, an iterative learning control (ILC) algorithm is implemented that
compensates for the error caused by this time delay. The approach has been shown to deliver
accurate results when the co-simulation complies with the standing time delay assumption, at the
cost of having to run the co-simulation several times. For cases that rely on different approxima-
tion schemes or without direct feedthrough, the developed approach can possibly give good results
in practice despite the ILC tracking a wrong reference. Further investigation for these cases is
required, nevertheless. Next to that, future work will revolve around applying the method to non-
linear or multi-rate co-simulations, in addition to developing strategies to determine the existence
of direct feedthrough in the subsystems, which is necessary to apply the method satisfactorily.
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