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ABSTRACT

In the ongoing development of DLR’s Versatile Aeromechanics Simulation Tool, an
elastic beam model is integrated into the multibody system based on the floating frame
of reference formulation. Although the application of this formulation for one dimen-
sional beam models has already been addressed in the literature, the challenge remains
to properly model the torsion dynamics of rotor blades — especially under high cen-
trifugal loads. To this aim, this work suggests the consideration of rotational shape
functions in the inertia shape integrals and in the application of gravitational, iner-
tial, and external loads. This modified approach is validated based on the structural
analysis of a rotor blade with complex geometrical properties.

Keywords: Torsion Dynamics, Inertia Shape Integrals, Centrifugal Loads, Rotational
Shape Functions, Propeller Moment.

1 INTRODUCTION

Helicopter rotor blades are usually slender structures with a rotor radius much larger than the
chord length and thickness. This geometrical property encourages modeling the blade as a one
dimensional (1D) beam, which saves computational costs compared to a 3D structural model.
For this reason, multi-physics tools for helicopter (rotor) simulations — so-called comprehensive
codes — commonly employ beam models to simulate the blades. This approach is also taken in
the Versatile Aeromechanics Simulation Tool (VAST) [1].

VAST’s multibody system (MBS) includes both rigid and flexible bodies. For flexible bodies, the
nodal position states ry and velocity states rip = Iy of the finite element (FE) model describe the
body deformation with respect to the floating frame of reference (FFR) [2], which moves (“floats™)
relative to the inertial frame by the linear and angular velocities v and @. In this work, the vectors
v and @ are expressed in the coordinates of the FFR. These vectors represent the rigid body portion
of motion with the corresponding mass matrix mgg, inertia tensor Jgg, and coupling matrix ST,
see the upper part of equation 1:
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The second order differential equation of the FE system has been converted to first order form
(lower part of equation 1), in which the FE system’s mass My, stiffness Ky, and damping Dy
matrices are found. Ky is composed of both the structural and geometric stiffnesses. D¢ depends
on the structural damping model. In this paper, no structural damping is applied, i.e. Dg = 0. The
rightmost entries S and Jor in the upper part of the overall mass matrix constitute coupling terms
between the rigid body motion and the flexible motion. The right hand side includes gravitational
loads Qg, inertial loads Qy, and external loads Q. acting on the rigid translatory, rigid rotational,
and flexible motion (superscripts R, 0, and f, respectively).



The set of nodal states (ry,ryr), the assembly of Ky, as well as a predominant portion of the shape
functions that are referenced in the following are based on the Beam Advanced Model (BAM)
[3, 4]. BAM is specialized to address the needs of helicopter blade modeling. Through the intro-
duction of differential degrees of freedom,’ it enables the efficient computation of discontinuous
physical characteristics, without the need for a refined discretization. BAM’s shape functions are
derived based on third-order Hermite polynomials, and are provided in the literature for all three
translatory deformations and torsion about the beam’s axis. Rotations about the cross sectional
axes are then computed based on the Timoshenko formulation.

According to the general theory [2, 5], several submatrices and vectors of equation 1 include
volume integrals with both the mass density p(x,y,z) and the translatory shape function matrix
Sira(x,,2) as integrands—the so-called inertia shape integrals. x, y, and z are the coodinates of
the volume increment with respect to the FFR. The shape functions are also used to evaluate the
kinematics of the system. For example, a particle’s translatory velocity reads @i = Sya(x,y,2) i
in the general 3D formulation. The bar indicates that the quantity is given relative to the FFR. In
contrast, for a 1D beam with torsional degrees of freedom as shown in Figure 1, Sy,(§) is insuffi-
cient to evaluate the kinematics of a particle that is located at a distance from the reference axis. §
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Figure 1. Particle in a cross section A moving due to torsional deformation of a 1D beam

is the coordinate along this axis, and uy is the particle’s offset from the reference axis within the
cross section. The particle’s velocity is U = Sya (&) rip + Ogex X up With @gex = S;or(§) ri. Here,
the rotational shape function matrix S;; has been introduced, as presented in [6]. For a consis-
tent consideration of S, in equation 1, this paper proposes the usage of the complemented shape
function matrix

S(Cagvn) :Stra(C)_ﬁA(gvn)Srot(C>v (2)

where (£,7) are the coordinates within the cross section and the tilde symbol denotes the cross
product operator according to
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The expression u = S(&,&, M)y evaluates to the same terms as given above. In section 2, the
individual terms of equation 1 are given based on the complemented shape function matrix ac-
cording to equation 2. The benefit of the modified implementation in the analysis of rotating
beams (especially helicopter rotor blades) is presented in section 3.

'Included are the derivatives with respect to the beam’s length axis of the axial elongation and torsion about this
axis, at locations immediately to each side of the node.



2 THEORY

The terms of equation 1 are taken from the literature [2, 5] in their general 3D formulation. This
section presents two modifications of the terms:

* The 3D volume integrals are transformed to 1D integrals along the beam’s length. The pre-
evaluated cross-sectional integrals, which are included in the beam model’s configuration
data, appear as integrands. This transformation improves performance and facilitates the
configuration of beam models.

* The complemented shape function matrix S = Sy, — s Syt 1S consistently applied.

2.1 Cross sectional mass moments in the local frame

First, the following cross sectional integrals are defined. In the local cross section frame, the
offset ufgc of a particle from the cross section reference (beam axis intersection point) reads u}gc =
(0,&, n)T. Table 1 lists the cross sectional mass moments in the local frame. These are included in
the beam model’s configuration data and do not depend on deformation, so they can be evaluated

in advance.

Table 1. cross sectional mass moments, integrated in the local cross sectional frame
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2.2 Cross sectional mass moments in the FFR

The transformation matrix T rotates vectors and matrices from the FFR to the local cross sectional
frame. Thus the application of TTv for vectors v and TTMT for matrices M rotates from the local
frame to the FFR. The FFR-transformed vectors and matrices are:
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T includes two rotations:

1. The orientation of the local frame with respect to the FFR in the undeformed configuration.
This contribution can be large, e.g. when the beam axis is bent, as is the case for some
modern helicopter rotor blades like the one investigated in section 3.2.

2. The flexible rotation due to deformation of the beam. This part is usually small but can be
important — especially for the torsional dynamics, as presented in section 3.1.

Consequently, the deformation states ry affect the rotation matrix T in equations 5 — 7, so that these
integrals — when expressed in the FFR — depend on the deformation of the beam as well.



2.3 Inertia shape integrals

The particle’s location relative to the FFR is it = @, + ua, where iy, is the cross section reference
location (affected by translatory flexible displacements), and ua is the offset within the cross
section (affected by rotational flexible displacements). This composition is used in the following
for the transformation of the 3D integrals over the volume V to 1D integrals along the beam axis
{. The integrals over the cross-sectional area A (equations 4 — 7) are shown in red to make them
more easily recognizable. The integrals corresponding to rigid body motion (not affected by the
introduction of the complemented shape function matrix) are:
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The integrals related to flexible motion are based on the complemented shape function matrix S
according to equation 2. These are:
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Note that Syry = Stra(&) and Syot = Srot(§). Along with the cross sectional integrals’ dependency
on the deformation state ry due to flexible rotation (cf. section 2.2), the integrals in equations 9,
10, and 12 also depend on the deformation because @iy, = (&, ry).



2.4 Load terms

Finally, the loads Qf, Qf, and Qf also contain the shape function matrix S. g denotes the gravita-
tional acceleration expressed in the FFR, while a is the FFR acceleration due to angular velocities
in the MBS.
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In equation 15, the conversions @iy @@us = — @A xlA® and —0} Aliy = Ouauy — 050D have

been used. Equation 16 differs from the other load terms because the external loads Qf, are n pairs
of discrete forces and moments (F;, M;), while Qg and QF are volume forces.

3 RESULTS

The modified implementation has a significant influence on the inertial loads term Q! acting on
the flexible motion. The added value of using the complemented shape function matrix S = Sy, —
i Sior instead of the original shape function matrix S = Sy, for calculating Qi is illustrated in the
following. Section 3.1 verifies the implementation based on an academic test case with analytic
reference results, and section 3.2 presents results for a practical test case.

3.1 Verification based on an academic test case

The modified implementation including S;.; accounts for the effect of inertial loads on the beam’s
nodes’ flexible rotation. One particularly relevant effect of inertial loads on flexible rotation in
helicopter rotor analysis is the propeller moment [7, 8], which is illustrated in Figure 2. The cross
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Figure 2. Phenomenological explanation of the propeller moment M,

section of a 1D-beam may have different inertial properties in its two directions. For example, the
lead-lag inertia per unit length of a typical rotor blade cross section is larger than its flap inertia
per unit length. In this case, for a rotating blade, the centrifugal forces F. generate the propeller
moment M,, which tends to rotate the section such that it lays flat in the plane of rotation.



The configuration used to verify the propeller moment is sketched in Figure 3. The “beam” con-
sists of four quasi-massless and torsionally compliant FE elements (grey part of the beam), which
together have the torsional stiffness k. The fifth and last element is a quasi-rigid cuboid of size
a-a-c with homogeneous mass density p (blue part of the beam). Note that the beam axis { is
not bent, i.e. the cuboid’s longitudinal axis coincides with one of its shorter dimensions a and not
with the longer side c¢. The beam is clamped to a hub with a constant rotational speed € and has
an undeformed inclination of ¥,r. Due to the propeller moment acting on the cuboid, the beam is
elastically twisted by ¥qex < 0.

Q =100rad/s
Vpre = 1°

k =2750Nm/rad

R=10m

a=0.1m

c=1.0m

p = 1000kg/m?>
Figure 3. Beam configuration for verifying the propeller moment

The propeller moment acting on the cuboid with inclination ¥ = Uy + Vgex 1S
My =—Q* - (Igy —Iz¢) -sin(9) - cos (), (17)

where the mass moments of inertia are Iy, =m/12 (a2+cz) and Igge =m/12 (a2+a2) with
m = p a’c. The expression given in equation 17 can, for example, be identified in the torsional dif-
ferential equation presented in [9] and is explicitly called “propeller moment” in [8]. The torsional
stiffness of the rotating beam in equilibrium counteracts the propeller moment, i.e. Ugex = M, /k.
Since ¥ < 1°, the simplifications sin(¥) ~ ¥ and cos(?¥}) ~ 1 are justifiable so that

_0? = (Iyy —Iz) Opre
Oiex = —— (Inn —Ie) - (Spre + Dhiex) & Vex = —
ex = T U P ¢ 1+ L (g — L)

In VAST, an equilibrium calculation is performed for this configuration, modeling the beam with
BAM elements. Table 2 compares the resulting flexible tip twist for S = Sy, and S = Sy — la Siot
with the analytical solution. As expected, Sy, does not account for the effect at all. However,
with S = Sya — Ui Spot, the result is correct within the accuracy expected from the numerics and
discretization.

=-0.75°.  (I8)

Table 2. Equilibrium flexible twist ¥qex of the beam in Figure 3

Analytical | VAST-BAM, S = Sya | VAST-BAM, S = Syra — iA Sror
Oftex = —0.75° Oftex = 0° Oftex = —0.74°

To address the frequency-domain behavior of the beam, the restoring propeller moment can be in-
terpreted as an additional stiffness kp, for which the small angle assumption for ¥ is again applied:

ky = OM,, /90 = Q7 (Iny — Ie¢ ) (19)



The expected torsional eigenfrequency is (k—l—kp) [ge with Ire = m/12 (62 +a2). Table 3

presents the first torsion eigenfrequency of the beam for the non-rotating case Q = Orad/s and
for Q = 100rad/s. In the non-rotating case, all results are identical, confirming the consistency
of the analytical and computational structural models (without inertial loads). At Q = 100rad/s,
a first torsional eigenfrequency of 18.19Hz is expected analytically. However, with S = Sy,
only a slight increase in eigenfrequency is observed compared to the non-rotating case. This is
attributed to geometric stiffening effects, which are not considered in the analytical calculation.
With S = Sy, — 1ia Sior, the eigenfrequency prediction of 18.33Hz is only slightly higher than the
analytical reference (41 %), which again is explained by geometric stiffening.

Table 3. First torsion eigenfrequency of the beam in Figure 3, also with Q = Orad/s

Q | Orad/s | 100rad/s
Analytical 9.10Hz | 18.19Hz
VAST-BAM, S = S, 9.10Hz 9.37Hz
VAST-BAM, S =Sy, —iaS;ot | 9.10Hz | 18.33Hz

These results show that the complemented shape function matrix is needed to account for the
propeller moment. Note that the rotation of the cross sectional integrals in equations 5 — 7 by T
must include the deformation, i.e. T = T(ry). This is crucial to determine k, (see equation 19)
because M, depends on Ugex. The torsion eigenfrequency, in turn, depends on k.

3.2 Validation based on a practical test case

As an example of a modern rotor blade, a prototype blade [3] from a helicopter rotor research
program at Airbus is investigated. Figure 4 shows the blade with a double-swept planform. The

Figure 4. Double-swept prototype blade, picture from [3]

real blade is attached to the rotor hub via a combined bearing which allows flap (out of plane)
and lead-lag (in plane) motion of the blade, and features an elastomeric spring-damper device.
Furthermore, a dedicated lead-lag damper is integrated into the blade root. The kinematics of
this lead-lag damper along with the blade pitch actuation via control rods constitute multiple load
paths, which are not yet supported in VAST. Therefore, a simplified blade attachment model is
used in VAST: The bearing is modeled as a flap-lag hinge sequence. A surrogate rotational flap
spring and a surrogate rotational lead-lag spring-damper are applied at the respective hinges. A
torsion hinge with a discrete surrogate torsional spring is also introduced — it models the elasticity
of the control rod and the swashplate.



Equilibrium calculations are conducted in vacuo at nominal rotor speed for blade pitch angles
within [—10°,20°]. The elastic tip twist with respect to the FFR is presented in Figure 5 for both
implementations of S used to calculate Q. At a pitch angle of 10°, a tip twist of —0.3° is observed
with S = Sy, while S = S, — i S;o¢ yields a significantly more pronounced tip twist of —0.5°.
The non-zero tip twist with S = Sy, is explained by the complex blade geometry with a pre-twist
distribution and a double-swept planform. Accordingly, in contrast to the test case in Figure 3, the
pure consideration of centrifugal loads acting on the blade axis introduces some torsion moments
in the beam.

0.2
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Figure 5. Equilibrium flexible tip twist with respect to the FFR in vacuo at nominal rotor
speed for different blade pitch angles

While the results shown in Figure 5 lack reference data for validation, experimental and numerical
reference results are available for the Campbell diagram of the prototype blade, which is presented
in Figure 6. In [3], the blade eigenfrequencies were identified based on a whirl tower test of the full
scale rotor (“reference, experimental”). Furthermore, the eigenfrequencies were calculated with
a standalone FE program (“numerical-BAM”) using BAM elements (not MBS-capable). The as-
signment of mode types (L = lead-lag, F = flap, and T/F = torsion/flap) has been adopted from [3].

The bottom of Figure 6 shows the first lead-lag mode (X ) and the first flap mode (4). These modes
feature a negligible deformation of the blade, but primarily contain flap or lead-lag displacements
in the respective hinges, so they are rigid body modes. The correlation is very good between all
numerical and experimental results. The two different implementations of S in VAST-BAM do
not cause deviations. The same holds for the second flap mode (+) which includes flexible flap
bending of the blade.

In contrast, differences are observed for the torsion/flap modes (®). At a normalized rotor speed
of 1.0, the first normalized torsion/flap eigenfrequency T1/F3(a) in the experiment is 4.25. The
VAST prediction with S = Sy, is 4.11, which is 3 % lower than in the experiment. In contrast, the
result using S = Sy, — Ua Syt for calculating Q£ is 4.20, which matches the experimental reference
with an error of —1 % and also fits the numerical reference better. For the second torsion/flap mode
T1/F3(b) with an experimental normalized eigenfrequency of 5.50, the prediction error improves
from —5% to +1%. The improvements are even more significant at higher rotor speeds. The
second lead-lag mode (%) is marginally affected by the changed implementation of S. This can be
explained by a coupling with the T1/F3(a) mode which has an eigenfrequency very close to that of
L2. Through this coupling, the propeller moment — that tends to influence torsion modes — may
also affect L2.
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Figure 6. Campbell diagram of a double-swept rotor blade, modeled with the original and
complemented shape function matrices S for the calculation of Qf, reference results taken
from [3]

As expected, the upgrade from S = Sy, to S = Sy, — A Siot in the calculation of Q5 primarily
affects the torsion modes of the rotor blade. This can be explained by the effect of the propeller
moment, as described in section 3.1. The upgrade is needed to properly predict the torsion eigen-
frequencies with the FFR formulation implemented for VAST-BAM.



4 CONCLUSIONS

The FFR formulation is used to model helicopter rotor blades as 1D beams within an MBS. To
appropriately account for the torsion dynamics of a rotor blade in this approach, rotational shape
functions must be considered in the inertia shape integrals and when projecting loads (e.g. centrifu-
gal forces) onto the flexible degrees of freedom. This can be achieved by using the complemented
shape function matrix, which includes the effect of rotational deflection combined with the beam
axis offset of a particle. The added value of this modified FFR formulation is the consideration
of the propeller moment which is demonstrated for an academic test case with analytic reference
results. To address a practical test case, a double-swept rotor blade is analyzed. The prediction of
the torsion eigenfrequencies significantly improves when using the complemented shape function
matrix in the calculation of inertial loads acting on the flexible degrees of freedom.
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