
ECCOMAS Thematic Conference on Multibody Dynamics
July 24 - 28, 2023, Lisbon, Portugal

End Effects in Spatial Beam Elements: Comparing the Variational
Asymptotic Method and the Eigenwarping Method

B. Seinhorst, M. Nijenhuis, W.B.J. Hakvoort

University of Twente, Precision Engineering
Drienerlolaan 5, Enschede, The Netherlands

[b.seinhorst, m.nijenhuis, w.b.j.hakvoort]@utwente.nl

ABSTRACT

Spatial beam elements can be used for efficient simulation and optimisation of flexure
mechanisms undergoing large deflections. However, for flexures with low slenderness
ratio, end effects can become relevant. These effects can be captured by introducing
additional warping fields in the formulation. In this work, we compare the warping
fields generated by the Variational Asymptotic Method (VAM) to the warping fields
generated by a recently developed method, referred to as the Eigenwarping method
(EWM). VAM constructs an expansion of the cross sectional warping, where it is
shown that each term has an asymptotically smaller contribution to the internal elastic
energy in terms of the slenderness ratio h/L. By truncating the expansion at a given
order, an accurate representation of the beam behaviour is obtained for only a small
number of required warping coordinates. The EWM considers the decomposition of
the cross sectional constitutive behaviour in non-decaying fields associated with an
elastic line and decaying cross sectional warping fields. The resulting set of decaying
warping fields can be truncated based on the associated decay length. In this paper,
an alternate interpretation of VAM is presented that allows better comparison to the
EWM. The warping fields obtained from both methods are compared to each other
and to classical results. Additionally, a beam element with warping fields is intro-
duced. Using the beam element, simulation results obtained with the warping fields
obtained from VAM and EWM can be compared. The case of a notched leaf flexure
is introduced, which contains a discontinuity in the cross section. Both methods can
describe the behaviour in the continuum and at fixed boundaries with only a small
number of additional warping fields. However, a large number of warping fields is
required to accurately describe the behaviour at the notch boundary.
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1 INTRODUCTION
Beam elements are widely used for the simulation of flexure mechanisms undergoing large de-
flections. The low number of associated degrees of freedom results in highly efficient simulations
for complex mechanisms. The assumptions behind the beam elements are usually based on the
slenderness of the beam. That is, the beam has a length L that is much greater than the dimensions
of the cross section h. For slender beams, the end effects become negligible. However, for shorter
beams, these effects can have a significant influence on the stiffness and stress. Similarly, they can
become significant when the cross section of the beam discontinuously changes, for example due
to local reinforcement or notches in leaf flexures [1, 2].

Several methods exist for modelling the end effects in spatial beam elements. Yu and Hodges
applied the Variational Asymptotic Method (VAM) to approximate the internal energy of a spa-
tial beam section up to a specific slenderness order (h/L)n [3]. The results are a generalized
Timoshenko [4] and Vlasov model [5] for spatial beams with arbitrary anisotropic cross section.
Additionally, the warping field of the cross section is obtained as a function of the traditional beam
curvatures.



Instead of using the variational asymptotic method, one may also construct an eigenvalue problem
associated with the cross sectional Hamiltonian, as demonstrated by Han and Bauchau [6]. This
results in eigenvectors associated with the deformation of the cross section. As far as the authors
are aware, there is no consistent name for this method. Inspired by the terminology in earlier work
of Bauchau [7], we will refer to the eigenvectors as Eigenwarpings and to the overall method as
the Eigenwarping Method (EWM).

Both VAM and EWM yield a decomposition of the cross-sectional displacement field. By retain-
ing only the dominant terms, an accurate representation of the beam behaviour can be obtained.
Furthermore, the low number of associated coordinates yield relatively low computational effort.
In the case of VAM, the truncation is based on the slenderness order of the warping terms (h/L)n.
For EWM, the truncation is based on the decay length of the Eigenwarpings.

In this work, we show that the VAM and EWM are both based on locally linear behaviour of the
cross section. Exploiting the locally linear behaviour, we construct a simple linear beam element
that incorporates a truncated set of warping fields, similar to e.g. [8]. Using this beam element,
we evaluate the trade-off between accuracy and computational cost, associated with the number
of retained warping fields for both methods. In particular, we consider the case of a notched
leaf flexure. The notched leaf flexure contains a discontinuity in the cross-section, resulting in
significant end effects. The performance of VAM and EWM is compared to a 3D finite element
model in COMSOL.

In the next section, VAM and EWM will be introduced and the resulting warping fields will be
compared. In section 4, a simple beam element with warping coordinates is introduced. Thereafter,
in section 5, performance of the warping fields is discussed for a notched leaf flexure case. Finally,
the conclusions and further research are discussed.

2 CROSS SECTION ANALYSIS
Han [6] and Hodges [3] take a different approach in deriving the behaviour of the cross section
from spatial beams. Here we show the similarity between the two methods and establish a baseline
formulation that will allow better comparison between both methods.

Han introduces a local Frenet-Serret frame to obtain the local strain γγγ and cross sectional strain
energy U

U(s) =
∫∫

γγγ
T Dγγγ dA, (1)

γγγ(s,y,z) = Γwww(s,y,z). (2)

Here, D contains the consitituve behaviour, Γ represents the small strain operator, dA = dydz and
www the local deflection in the neighbourhood of the cross section. This may be interpreted as taking
a small slice of the beam and analysing it in a local frame of reference. In this local frame the
displacements are small and the slice behaves as if it were a linear beam.

Hodges takes a different approach, leading to the same expression for the internal energy. How-
ever, a different expression for γγγ and an additional constraint are obtained, which are given by

γγγ(s,y,z) = L(y,z)γ̄γγ(s)+Γvvv(s,y,z), (3)

0 =
∫∫

DT (y,z)vvv(s,y,z) dydz (4)

where γ̄γγ =
[
γ̄x κ̄x κ̄y κz

]T contains the local stretch and curvature associated with the elastic
line of a spatial beam, vvv(s,y,z) is the warping of the cross section and E(y,z) and D(y,z) are given
later on in Eq. (6).

The term L(y,z)γ̄γγ(s) in Eq. (3) results from the deformation of the elastic line. This term can also



be interpreted as the strain resulting from an Euler-Bernoulli displacement field:

L(y,z)γ̄γγ(s) = Γ
(

D(y,z)ūuu(s)+ D̃(y,z)ūuu′(s)
)
. (5)

where ūuu(s) =
[
ū v̄ w̄ θ̄

]T contains the typical beam coordinates for small deformations, □′

denotes the spanwise derivative ∂□/∂ s and the matrices D, D̃ and E are given by

D =

1 0 0 0
0 1 0 −z
0 0 1 y

 ; D̃ =

0 −y −z 0
0 0 0 0
0 0 0 0

 ; LT =


1 0 0 0 0 0
0 0 0 0 y −z
−z 0 0 0 0 0
y 0 0 0 0 0

 , (6)

As a consequence of Eq. (3), Eq. (5) and Eq. (2), it can be concluded that the warping vvv, used by
Hodges, is related to the warping www, used by Han, using the following relation

www = vvv+D(y,z)ūuu(s)+ D̃(y,z)uuu′(s). (7)

Conversely, ūuu (and by Eq. (7) also vvv) may also be constructed from www by employing the constraint
given in Eq. (4), resulting in

0 =
∫∫

DT (y,z)
(
www−D(y,z)ūuu(s)+ D̃(y,z)uuu′(s)

)
dA, (8)

=
∫∫

DT wwwdA −
∫∫

DT DdA ūuu−
∫∫

DT D̃dA uuu′ (9)

→
∫∫

DT DdA ūuu =
∫∫

DT wwwdA, (10)

where the last equation only holds if the origin of the cross section is located in the geometric
center, as this will result in

∫∫
DT D̃dA = 0. Since the strain formulations of Han and Hodges are

equivalent, we continue with the strain relation given in Eq. (2), keeping in mind that we can easily
reconstruct ūuu from www using Eq. (10).

Both Han and Hodges proceed by partially discretising the cross section. Here, we show the
discretisation for www,

www(s,y,z) = N(y,z)w̄ww(s). (11)

Typically, piecewise quadratic basis functions are used. Since D and D̃ are linear in y and z, the
exact same discretisation can be used for vvv. Substituting this in Eq. (2) yields, as detailed in [6],

γγγ = Γ(N(y,z)www(s)) = B(y,z)w̄ww(s)+G(y,z)w̄ww′(s). (12)

It follows that the cross sectional internal energy may be written as:

U(s) =
[

w̄ww
w̄ww′

]T ∫∫ [
BT DB BT DG
GT DB GT DG

]
dA

[
w̄ww
w̄ww′

]
=

[
w̄ww
w̄ww′

]T [ E C
CT M

][
w̄ww
w̄ww′

]
(13)

Introducing the discretisation into Eq. (10), ūuu can be expressed as:

ūuu(s) =
(∫∫

DT D dA
)−1 ∫∫

DT N dAw̄ww = Ψw̄ww(s) (14)

In order to retain ūuu(s) as explicit variables, U(s) can be modified with the Lagrange multipliers λλλ .

U(s) =
1
2

[
w̄ww
w̄ww′

]T [ E C
CT M

][
w̄ww
w̄ww′

]
−λλλ

T (ūuu−Ψw̄ww) (15)

Having established the discretised version of the sectional internal energy, the VAM warping ex-
pansion and the Eigenwarpings will be introduced in the next two sections respectively.



2.1 VARIATIONAL ASYMPTOTIC METHOD
The variational method is based on the recursive perturbation of the warping field [3]. By using
O(w̄ww′) = (h/L)O(w̄ww), each subsequent perturbation is used to obtain an internal energy up to a
higher order. Carefully following the procedure results in the following expansion for w̄ww and λλλ :[

w̄ww
λλλ

]
=

[
w̄ww0
λλλ 0

]
+

[
w̄ww1
λλλ 1

]
+

[
w̄ww2
λλλ 2

]
+O(h/L)3, (16)

with the following relations for the first two terms:[
w̄ww0
λλλ 0

]
=

[
E ΨT

Ψ 0

]−1[0
I

]
ūuu =

[
sw0

sλ0

]
ūuu (17)[

w̄ww1
λλλ 1

]
=−

[
E ΨT

Ψ 0

]−1[C−CT

0

]
w̄ww′

0 =

[
sw1

sλ1

]
ūuu′ (18)

For n ≥ 2, the following recursive relation is obtained.[
w̄wwn+1
λλλ n+1

]
=−

[
E ΨT

Ψ 0

]−1([C−CT

0

]
w̄ww′

n −
[

M
0

]
w̄ww′′

n−1

)
=

[
swn

sλn

]
ūuu(n). (19)

If the original derivation is followed, a series expansion of vvv and λλλ in terms of γ̄γγ is obtained.
The series above is equivalent. However, since γ̄γγ =

[
u′ θ ′ v′′ w′′]T , the terms representing

u,v,v′,w,w′ and θ are excluded in the original derivation. However, as can be seen in Eq. (7), this
is compensated by the difference in definition between vvv and www.

Since the asymptotic expansion process to obtain Eqs. (16-19) can be quite involved, we would
instead like to interpret the VAM solution as an approximate solution to the following DAE. This
DAE can be obtained by requiring Eq. (15) to be stationary with respect to www and λλλ , yielding[

E ΨT

Ψ 0

][
w̄ww
λλλ

]
+

[
C−CT 0

0 0

][
w̄ww
λλλ

]′
+

[
−M 0

0 0

][
w̄ww
λλλ

]′′
=

[
0
I

]
ūuu, (20)

A

[
w̄ww
λλλ

]
+B

[
w̄ww
λλλ

]′
+C

[
w̄ww
λλλ

]′′
=

[
0
I

]
ūuu. (21)

Inspired by VAM, we introduce the following trial solution

[
www
λλλ

]
=

[
sw0

sλ0

]
ūuu+

[
sw1

sλ1

]
ūuu′+

[
sw2

sλ2

]
ūuu′′ . . .=

[
s0 s1 s2 . . .

]


ūuu
ūuu′

ūuu′′
...

 (22)

Substituting this in Eq. (20) and rearranging yields:

 A
[
s0 s1 s2 . . .

]
+B

[
0 s0 s1 . . .

]
+C

[
0 0 s0 . . .

]



ūuu
ūuu′

ūuu′′
...

=

[
I 0 . . .
0 0 . . .

]
ūuu
ūuu′

ūuu′′
...

 (23)

Since the two sides should be equal, we can equate term by term to obtain the same warping fields
as given in Eqs. (16-19). Hence, the warping fields obtained using VAM may be interpreted as a
particular solution of the DAE given in Eq. (20).

Contrary to Hodges we have not explicitly considered the order (h/L)n of each of the terms.
However, each of the subsequent warping fields wwwi is asymptotically smaller than the previous.
Therefore, a reasonable approximation of the continuum can be obtained by truncating the series
after a certain amount of terms.



2.2 EIGENWARPINGS
The internal energy given in Eq. (13) can be rewritten into a Hamiltonian by taking the Legendre
transform, where the dual variable t̄tt = ∂U/∂ w̄ww′ is introduced. t̄tt may be interpreted as the surface
traction on the cross section. This yields the Hamiltonian

H =

[
w̄ww
t̄tt

]T [I C
0 M

]−1[ −E 0
−CT I

][
w̄ww
t̄tt

]
=

[
w̄ww
t̄tt

]T [ E Ĉ
ĈT M̂

][
w̄ww
t̄tt

]
, (24)

with the corresponding differential equation:[
w̄ww
t̄tt

]′
= J

[
E Ĉ

ĈT M̂

][
w̄ww
t̄tt

]
= F

[
w̄ww
t̄tt

]
; with J =

[
0 I
−I 0

]
. (25)

This equation poses an eigenvalue problem. Han shows that there are 12 repeated eigenvalues with
value 0, which can be associated with generalised eigenvectors corresponding to u,u′,θ ,θ ′,v,v′,v′′,
v′′′,w,w′,w′′ and w′′′. The remaining eigenvalues and eigenvectors represent exponentially decay-
ing modes. It follows that there is a symplectic transformation V , which contains the eigenvectors,
that diagonalises F . Due to the Hamiltonian structure, each eigenvalue µ has a corresponding
eigenvalue −µ . This can be interpreted as a decaying mode for both the left and the right ends
of the beam. Furthermore, if µ is complex, then the complex conjugates of µ and −µ are also
eigenvalues.

Here, a slight modification to the approach used by Han is introduced. We consider the following
equivalent generalised eigenvalue problem to compute the eigenvectors.[

C −M
I 0

][
w̄ww
t̄tt

]′
=

[
−E 0
−CT I

][
w̄ww
t̄tt

]
(26)

This form preserves the sparsity of E,C and M, which is numerically beneficial if only a reduced
set of Eigenvectors with a long decay length is computed. Since the neglected eigenwarpings have
a very short decay length, their influence on the beviour of the continuum is negligible.

3 COMPARING VAM AND EWM
In the previous section we outlined that VAM and EWM are both based on the same sectional
internal energy. VAM yielded a series of warping fields related to the traditional beam variables ūuu
and its derivatives. Similar to VAM, the EWM yielded a series of warping fields. However, each
of the resulting warping fields now has an associated decay rate.

In the remainder of this section we consider an isotropic rectangular section and compare the
warping fields obtained using VAM to those obtained using EWM. Furthermore, similarities with
classical results from literature are discussed.

3.1 A RECTANGULAR SECTION
In this section an isotropic rectangular cross section is considered. The section has dimensions
w = 1m, h = 0.1m and a Poisson ratio of ν = 0.3. The Young’s modulus of the material is not
relevant, since it only scales the section internal energy.

Figure 1 shows the warping fields obtained using the described VAM procedure and figure 2 shows
the warping fields obtained with the EWM procedure with the associated eigenvalue µ .

We would like to point out several classically known effects: The anticlastic curvature (v′′ and w′′

in Fig. 1; and 2 and 3 in Fig. 2), shear warping (v′′′,w′′′ and 5,6), Saint-Venant torsional warping
(θ ′ and 4) and the Poisson effect (u′ and 1).

Curiously, as also pointed out in [6], the shear terms (v′′′,w′′′) are of O(h/L) according to VAM,
however their decay rate is zero according to the EWM (5,6). Furthermore, a slow decay solution,



Figure 1. The first 16 cross sectional warping fields wwwi obtained using the VAM.

which is an approximate combination of anticlastic curvature and shear, is also present in EWM
(7,8). As of now, we have found no intuitive explanation for this difference.

The EWM warping fields (9,10) are related to a generalised version of the well known Vlasov
torsion theory. This torsion theory can be reconstructed from VAM, as outlined in [5]. The re-
sulting decay rate is associated with the warping fields θ ′,θ ′′ and θ ′′′ and for this section results
in a 37% decay length of 0.2395m for VAM, which differs only slightly from the decay length of
1/µ = 0.2436m obtained by the EWM.

Other similarities between the warping fields also do exist. For example u′′,u′′′,u′′′′ and u′′′′′ are
approximately linear combinations of (11,12,13,14).

4 BEAM ELEMENT WITH WARPING
In the previous section we have compared the warping fields produced by VAM and EWM for a
rectangular cross section. In this section a simple beam element is derived based on a truncated set
of warping fields from either EWM or VAM. In the next section, the beam element will be used to
determine the number of warping fields required to accurately describe the end effects occurring
in a notched leaf flexure.

As shown in section 2, locally the behaviour of a spatial beam is linear. In order to keep the
evaluation of the warping simple, we opt to evaluate their performance here within a linear beam
framework. The linearised cross section behaviour shown here can be extended to a beam ele-
ment for arbitrary rigid body body motion by considering the element in a co-rotational frame of
reference. However, the extension will not be discussed here.

Consider the following expansion of the sectional displacement field

w̄ww(x) = Φᾱαα(x). (27)



Figure 2. The first 16 cross sectional warping fields wwwi obtained using the EWM. µi denotes
the eigenvalue corresponding to the depicted Eigenwarping.

Both VAM and EWM yield as the first six warping fields the rigid body translation and rotation
of the cross section, denoted by ᾱ1−6 =

[
ūx ūy ūz φ̄x φ̄y φ̄z

]T . The remainder of the fields
are taken as the warping fields shown in Figure 1 for VAM and Figure 2 for EWM. In VAM, the
expansion can be truncated at a certain order (h/L)n, whereas in the case of the EWM, the fields
can be truncated based on the decay length real(µ)< σn.

Using the constructed basis Φ for the displacement field, we project the internal energy

U =
1
2

∫ [
ᾱαα

ᾱαα
′

]T [
Φ 0
0 Φ

]T [ E C
CT M

][
Φ 0
0 Φ

][
ᾱαα

ᾱαα
′

]
dx (28)

Choosing to interpolate with cubic Legendre polynomials for all coordinates

ᾱi(s) = N(s)
[
ᾱp ᾱ ′

p ᾱq ᾱ ′
q
]T

(29)[
ᾱαα

ᾱαα
′

]
=

[
N(s)
B(s)

]
ααα pq, (30)

results in the internal energy and elemental stiffness matrix given as

U =
1
2

ααα
T
pq

∫ [
N(s)
B(s)

]T [
Φ 0
0 Φ

]T [ E C
CT M

][
Φ 0
0 Φ

][
N(s)
B(s)

]
ds ααα pq (31)

= ααα
T
pqKelemααα pq. (32)



4.1 BOUNDARY CONDITIONS
For a fixed end, the boundary conditions become ūuu = ūuup, φ̄φφ = φ̄φφ p, with the remaining coordinates
zero. For a mixed boundary, we only have contact on a part of the cross section Ωc. Denote the
separation at the boundary as ∆www = wwwL −wwwR. We may then define a penalty constraint by adding
a penalty term related to

∫
Ωc

∆wwwT ∆www dA.

5 RESULTS
In this section we use the beam element outlined in section 4, with a truncated set of warping fields
from VAM and EWM as obtained from section 2 and discussed in section 3, to model a notched
leaf flexure and investigate number of required degrees of freedom for accurate results.

We consider a leaf flexure with a very small notch, as depicted in Figure 3. The ends of the leaf
flexure are considered rigid, as they typically connect to a rigid structure. The right end is loaded
with a force and 3 perpendicular torques, while the left end is considered fixed. In the middle of
the leaf a small notch is present, which is a short section of beam with a reduced cross section.
Sometimes such a notch is used in mechanism design to reduce the transverse bending stiffness of
a leaf flexure, but not the shear stiffness. The notch presents a challenging case where highly local
deformation is present.

Figure 3. The notched leaf flexure. The beam has a length of 4m and the same cross section
as discussed in section 2. At the notch, the width is reduced to w = 0.2m.

The notch is deliberately kept short to maximise the end effects. Furthermore the entire leaf flexure
is meshed with 200 beam elements along its length, to ensure discretisation error is small. Beam
variables are extracted from the finite element solution using Eq. (10).

Figure 4 shows the beam variables u,φx,φy and φz, as well as the traditional beam strains γ,κx,κy,κz

as a function of the span coordinate s. As can be seen, there are discontinuities in be beam vari-
ables occurring at the notch. The solutions based on a higher number of warping fields seem to
be able to capture part of the discontinuity, although there is still a significant discrepancy visible.
However, at the fixed boundaries, the warping element solutions converge well to the COMSOL
solution for an increasing number of warping terms. Particularly, the torsional curvature κx shows
the predicted Vlasov decay from section 3, with the traditional boundary condition κx = 0. The
bending curvature κy also shows the decay predicted in section 3, allthough the effect is much
less prominent as the decay mode is barely excited. Perhaps this explains why this effect is rarely
mentioned in literature.

Note that even EWM (λ = 0) and VAM (O(1)) solutions are able to produce decay solutions at the
boundary, even though the decay solution is not explicitly included. This results from a restraint
warping solution inherent to the beam model proposed in section 4.

In order to give a more quantitative comparison, we compare the overall elongation, torsion and
bending stiffness of the notched leaf flexure versus the number of included warping terms. The
results are given in Figure 5. It can be seen that the beam element formulation from section 4
yields in general an overestimate of the stiffness. Increasing the number of warping fields leads
to a better approximation of the true stiffness, although significant error remains when up to 38
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Figure 4. The beam coordinates and beam strains over the length of the beam. The notch is
located at x = 0.

warping terms are included. No clear distinction is visible between the performance of VAM and
the EWM.

6 CONCLUSIONS
In this work the use of a small set of warping coordinates in beam elements is investigated. Two
expansions of warping fields have been considered. One based on the Variational Asymptotic
Method (VAM), the other based on the Eigenwarping Method (EWM). VAM yields an expansion
of the warping field that can be truncated based on the aspect ratio of the beam. The EWM yields
an expansion of the warping field that can be truncated based on the decay length. Both methods
show similarity in the obtained warping fields and are able to reproduce classical effects such as
anticlasitic curvature and Vlasov restrained warping.

Only a few terms of both expansions are needed to describe the beam behaviour well in the con-
tinuum and at the rigid ends. However, in case of a severe discontinuity, such as the presented
notched leaf flexure, a significant amount of additional terms are necessary to obtain accurate
stiffness results. There is little difference between the two methods when looking at the number
of terms required for a certain accuracy.

In this work we have introduced additional coordinates for each of the warping fields. Alterna-
tives are possible by incorporating structural relations between the warping fields. However, this
requires further research.
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