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ABSTRACT 

Fast and accurate motion control can be important with robotic arms performing large 

movements. However a compromise should be made between the reduction of cycle 

time and tracking accuracy. This is due to the inability of joint servomotors 

controllers to address nonlinearities and uncertainties of the dynamic models of the 

robotic arms. 

In this paper, we consider an architecture which does not requires any prior 

information about the dynamic model. It consists in learning the dynamic response 

of a reference position PD controller by using a neural network (NN) system in an 

outer loop to predict/correct the tracking errors of this PD. This paper aims at 

determining the optimal architecture for the NN system and identify the best practices 

to maximize its performances. Especially, we compare two different methods for the 

NN system. Either one NN per servomotor or a single global NN for the whole robot. 

To evaluate these two approaches, we use both simulated and real robotic arms (3D-

printed). 
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1 INTRODUCTION 

The transfer of robotics into everyday life is currently accelerating, with 20 million robots 

expected to be in use worldwide by 2030 [1]. In this field, fast and accurate motion control is 

usually required with robotic arms performing large movements.  

Control methods for a successful tracking of such trajectories by robot arms is a well-studied 

problem [2]. The most-current control architecture consists in a joint torque control using a linear 

controller such as a traditional proportional–integral–derivative (PID) controller. To compensate 

the response time of the controller, a feedforward compensation using the dynamic model of the 

system is usually added. However yet, for most robotics arms, an accurate dynamic model can be 

difficult to obtain, due to the nonlinearities (e.g. friction) and uncertainties (e.g. inertial 

parameters) in these dynamic systems [3] which makes it challenging to efficiently implement on 

robot arms. Thus, the inability of joint servo controllers to address these nonlinearities and 

uncertainties can lead to a degradation of a trajectory tracking accuracy [4]. In general, the chosen 

solution is to find a compromise between the reduction of cycle time and improvement of tracking 

accuracy for industrial robots [5]. This situation is currently accentuated with the attempts to 

develop 3D printed low-cost robotic arms, which usually have high friction and cheaper motors. 

In this case, it is either possible to use a simplified model [6] or machine learning methods [3]. 

Notably, iterative methods such as the iterative learning control, are based on the repetition of 

tasks and allow efficient trajectory tracking without any information on the dynamic model [7][8]. 

However, the learned representation is not transferable between different trajectories. 

Recently, controllers based on neural networks have attracted attention with its potential ability 



to generalize beyond the training set [5]. For trajectory tracking especially, the power of 

approximation of NNs has been used in controllers to learn either forward or inverse dynamics of 

the system. [9][10][11][12]. 

To approximate the systems forward dynamics, several NNs such as recurrent neural networks 

(RNNs), feedforward networks or radial basis function neural network (RBF) have been used 

[13][14][15][16][17]. Most of these works are operating at a torque level control, which usually 

requires many parameters for the NNs – in the order of 10^5 in [18], for a 7DOF robot arm – and 

several neural networks to approximate different elements of the dynamic model. In [4], the 

learning of the direct dynamic model is made at the joint position control level combining a PID 

controller with a RNN with only around 10^3 parameters, directly as one integrated model. 

NNs have also been used to learn inverse dynamic models and included as a feedforward 

controller for dynamic compensation [19]. It already has been shown that NNs - especially RNNs 

and LSTM - can outperform other techniques such as Gaussian Processes to learn inverse 

dynamics when there are sufficient training data [20][21]. In [4] and [22], a NN architecture is 

used in an outer-loop on either a quadrotor with a deep neural network or a 7DOF robot arm with 

an RNN. These papers highlighted three main advantages of using NNs in an outer control loop 

summarized in [4]. First, NNs architectures can be applied to various systems with complex 

dynamics while ensuring its stability. Second, this approach doesn’t need any prior information 

on the system and can be applied to unseen trajectories without any adaptation process. Third, 

with a good training process, this approach demonstrates good accuracy in trajectory tracking, 

while being computationally efficient with a small model. 

In [5], the inverse dynamics learning process of an industrial ABB robot is done in simulation by 

implementing iterative learning control (ILC) for many trajectories to collect data for the NN on 

the real system. However, this technique requires a good dynamics simulator of the system, which 

is rarely available for non-industrial robots, because a lot of data is needed to train the model. In 

this paper, unlike the previous article which used only one NN for the whole system, the authors 

mentioned that on their studied ABB robot, the joints dynamics are decoupled – i.e. the 

movements of the joints do not impact the dynamics of other joints – so it’s possible to train 6 

different NNs, with each one approximating the dynamical inversion for one joint.  

In [12], we proposed a control architecture for high-speed trajectory tracking using the advantages 

of both PD – stable and easy to use – and neural networks – efficient to estimate the dynamics of 

systems. Contrary to [4], we used one NN per joint, instead of one global NN for the whole robot 

arm. The architecture – illustrated in Figure 1 – consists in learning the dynamic response of a 

reference PD controller by using a NN and use it in an outer loop as a feedforward compensation 

to predict/correct the errors of this PD. This method allows reducing the errors in position and 

speed during the trajectory tracking, even without any prior information about the dynamic model 

[12]. However, no detail was provided to take maximum benefits of this method, forcing one to 

experimentally choose learning parameters. Especially, there is no guideline about the best 

architecture for the learning system when used as a feedforward controller – either a unique NN 

for the whole system or one smaller NN for each joint – as well as the conditions of performance 

for this method. The objective of this study is to determine the optimal architecture for the learning 

system and identify the best practices to maximize its performances. To meet this objective, we 

use both real and simulated robotic arms in various configurations. 

The rest of the paper is organized as follows. Section II presents the problem statement and the 

methodology. Section III and IV show the results of the study and the discussions. Finally, 

conclusions are summarized in Section V.  

2 METHODOLOGY 

The equations of the simulated system are generated with the Robotran software. The used 

formalism is the semi-explicit formulation, also referred as the direct dynamic model in the 

literature. 

𝑴(𝒒, 𝜹) 𝒒̈ + 𝒄(𝒒, 𝒒̇, 𝜹, 𝒇𝒓𝒄, 𝒕𝒓𝒒, 𝒈) = 𝝉(𝒒, 𝒒̇) (𝟏) 



With 𝑴[𝑛 ∗ 𝑛] the symmetric generalized mass matrix of the system, 𝒄 [𝑛 ∗ 1] the non-linear 

dynamic vector which contains the gyroscopic, centrifugal and gravity terms, as well as the 

contributions of external forces and torques, 𝒒[𝑛 ∗ 1] the relative generalized coordinates, 
𝜹[10𝑛 ∗ 1] which contains the dynamics parameters of the system - masses, center of 
masses, inertia -, and 𝝉[𝑛 ∗ 1] the generalized joint forces. For more details, you can read the 
Robotran documentation [23]. 

To be as realistic as possible, the effect of the motors in the dynamic model is considered with 

the inertia of the rotor of each motor and a viscous friction, velocity-dependant [24]. For 

simplicity, we neglect the nonlinear friction torques given in this article. Thus, we can write the 

model of the motor as follow: 

𝑱𝒎𝒒̈𝒎 + 𝑫𝒎𝒒̇𝒎 = 𝝉𝒎 − 𝑹𝝉 (𝟐) 

With 𝝉 corresponding to the generalized joint forces of equation (1), 𝒒̇𝒎[𝑛 ∗ 1] and 𝒒̈𝒎[𝑛 ∗ 1] the 

velocities and accelerations of the 𝑛 motors, 𝑱𝒎, 𝑫𝒎 and 𝑹 three [𝑛 ∗ 𝑛] diagonal matrices 

corresponding respectively to the inertia moments, the viscous friction coefficients of the motors 

and the gear reduction ratios. Finally, 𝝉𝒎[𝑛 ∗ 𝑛] is the vector of torques supplied by the motors. 

Based on [24], we use the equation (1) to replace 𝝉 in equation (2) and the relation 𝒒 = 𝑹𝒒𝒎 to 

combine the equations to obtain the whole model of the simulated arm: 

𝑱𝒎𝒒̈𝒎 + 𝑫𝒎𝒒̇𝒎 = 𝝉𝒎 − 𝑹(𝑴𝒒̈ + 𝒄) (𝟑) 

(𝑱𝒎 + 𝑹𝑴𝑹)𝒒̈𝒎 + 𝑫𝒎𝒒̇𝒎 + 𝑹𝒄 =  𝝉𝒎 (𝟒) 

𝒒̈ = 𝑹𝒒̈𝒎 = 𝑹[(𝑱𝒎 + 𝑹𝑴𝑹)−𝟏(𝝉𝒎 − 𝑫𝒎𝒒̇𝒎 − 𝑹𝒄)] (𝟓) 

We consider an 𝑛-dof robot arm with a joint servocontrol with input 𝒒𝒄 ∈ 𝑅𝑛, the joint position 

command and the output 𝒒 ∈ 𝑅𝑛, the measured joint position. Our goal is to find a feedforward 

compensation such that for a given desired trajectory 𝒒𝒅, the corrected input command 𝒒𝒄 would 

result in the perfect tracking of this desired trajectory: 𝒒𝒄 → 𝒒 = 𝒒𝒅. The architecture of the 

control system is presented in Figure 1. 

Figure 1. Control architecture for high-speed trajectory tracking [4][12] 

To obtain the required results to compare the neural networks architectures, we used two 3D-

printed robot arms, with 3 and 5 degrees of freedom (DOF) and a simulated model of a 3DOF 

robotic arm. The experimental results support and enhance the simulated results by ensuring that 

they reflect the reality. We also assume that the internal dynamics of the robotic arms is 

deterministic and repeatable.  

Using both real robotic arms and simulated models, we used the following method: 

- Choose a configuration to test. Either the real or the simulated robot arm, the number and 

the position of degrees of freedom (DOF), the duration of the trajectories and the 

configuration of the NN system. In the rest of the paper, the use of one independent NN 

for each servomotor is designed as “method 1”. The use of a unique global NN for all the 

system is designed as “method 2”. Especially, more parameters are available for the 

simulated model: the PD parameters, the reduction ratio of the servomotors and the noise 

magnitude. 

- Build a dataset of trajectories that represents the whole workspace of the arm by using a 

simple PD controller on each joint. Each dataset is composed of five variables for each 

of the five motors: position 𝒒 and velocity 𝒒̇ of the motor at two consecutive timestamps 

– 𝒒(𝑡), 𝒒(𝑡 + 𝛿), 𝒒̇(𝑡), 𝒒̇(𝑡 + 𝛿) – and the command sent between these two timestamps 

𝒖(𝑡).  



- Train the NN architecture to learn the dynamic model through the response of the PD 

controller. Giving the NN a lot of data of trajectories, it will learn which command it has 

to send to each motor to go from a state – 𝒒(𝑡), 𝒒̇(𝑡) – to the next – 𝒒(𝑡 + 𝛿), 𝒒̇(𝑡 + 𝛿) 

– and in an implicit way, the dynamic model of the robotic arm. 

- Generate a new set of commands for the motors, which considers the response time of 

the controller to send the required series of commands to each motor so that these ones 

execute the desired trajectory. 

- Store the tracking errors for 𝑛 test trajectories (𝑛 = 40, chosen number to have low 

variation in the results). 

- Repeat steps 3 to 5 for a different number of training trajectories and different NN 

architectures to compare their effectiveness to track the test trajectories with accuracy. 

The evaluation of the accuracy of the control system for trajectory tracking has been done by 

comparing the root-mean-square (RMS) errors all along the trajectory: 𝑒 = √𝑚𝑒𝑎𝑛(∑(𝒒 − 𝒒𝒅) 

3 RESULTS 

3.1  Results with the simulated model without reduction ratio 

Figure 2. Learning curve with both methods 1 and 2 without reduction ratio 

Figure 2 illustrates a typical learning curve obtained with the simulated model using both 

methods. We observe that the method 1 reaches its best performances with on average 3 times 

less data than method 2 (10 to 100 trajectories needed for the first one, versus 100 to 250 for the 

last approach). 

The learning curves for motors 1 and 2 highlight a difference of the tracking accuracy of the two 

studied architectures when more than 100 trajectories are available. The method 1 does not exceed 

performances of the PD controller with an RMS around 0.2 radians whereas the second method 

manages to get an RMS error less than 0.04 radians – or 2.3 degrees. On the opposite, the learning 

curve for the third motor shows similar performances for the trajectory tracking between the two 

methods with an RMS error of 0.016 radians – less than 1 degree – which represent a 91% 

diminution of tracking errors compared to the PD controller. 



3.2 Results with the simulated model with reduction ratio 

Figure 3. Learning curve with both methods 1 and 2 with a reduction ratio R=0.01 

Figure 3 presents the learning curves for the two architectures with a reduction ratio R of 0.01. 

This time, the performances are similar for all the three motors with an RMS error under 0.05 

radians – 3 degrees. As for the Figure 2, we still observe that the method 1 reaches its best 

performance with less data than method 2 (30 to 100 trajectories needed, versus 100 to 200 for 

the method 2). 

Figure 4. Relative performances of the neural networks compared to the reference PD 

controller as a function of the reduction ratio 

Figure 4 presents the average relative performances for both methods, with the reference PD 

controller in function of the reduction ratio of the servomotors. It shows similar performances for 

both methods for a ratio below 0.15 with a relative RMS errors of 0.15 compared to the PD 

controller and a progressive degradation of performances of the method 1 when the ratio 

increases. For a reduction ratio of 1 – i.e no reduction – the method 2 demonstrates better accuracy 

than method 1 with a relative RMS errors of 0.22 versus 0.56 compared to the PD controller, i.e 

2.5 times better. 

Figure 5 shows relative performances of both methods compared to the reference PD controller 

depending on its accuracy – or parameters – for two different ratios between the frequency of the 

dynamic integration and the frequency of the neural network controllers. When the step time 

corresponds to the Δ𝑡 between two commands from the neural network, we can note that the RMS 

errors of the NN are almost proportional to those of the PD controller, with a diminution of around 

90% of its tracking errors. When the frequency of the dynamic integration is ten times the 

frequency of the NN, the diminution of the tracking errors with respect to the PD controller is 

between 80% and 85%, i.e the RMS errors are 2 times more important than when the step time 

are the same. Moreover, when the reference PD is more aggressive – i.e manage to track the 

trajectories with an RMS error less than 3 degrees – we can see that the performances of the NN 



are no longer proportional to those of the PD. But the feedforward neural network is more efficient 

when the frequencies of both neural network system and dynamic integration matches, with the 

NN system struggling to reduce the error and has an RMS error under 0.5 degree when the two 

frequencies are different. 

Figure 5. Relative performances of the neural networks to the reference PD controller as a function of the 

accuracy of the PD controller and the step time of the direct dynamic integration  

Table 1. Comparison of the median relative RMS errors in function of the size of the NNs 

Method One NN for each servomotor One global NN for the whole system 

Size of the 

NN 

1 3 16 2x3 2x16 3x16 1 3 16 2x3 2x16 3x16 

Relative 

RMS 

1 1.057 0.978 0.935 0.992 0.996 24.26 0.970 1.014 1.027 0.989 1.063 

 

Table 1 shows a comparison of the median relative RMS error for different sizes of neural 

networks for both methods 1 and 2, tested for different PID parameters. All tested architectures 

which have at least the same number of neurons as the number of associated motors on each layer, 

have a relative median accuracy between 0.935 and 1.063 compared to the smallest neural 

network which is less than 10% difference on the accuracy. On the contrary, when the number of 

neurons on each layer is smaller than the number of associated motors, the NN does not manage 

to converge. 

Figure 6 shows relative performances of both methods compared to the reference PD controller 

depending on the noise present in the data used for training. When there is no noise, we still have 

90% improvement of trajectory tracking compared to the reference PD controller with an RMS 

error of 0.86 degrees. First, we can observe performances and a diminution of the accuracy of the 

system which is (very !) similar for both methods 1 and 2. Moreover, when the noise is greater 

than 0.5 degrees – which is already really important, for example the noise of our real system is 

estimated to around 0.2 degrees (one step of the encoder) – it doesn’t seem to influence much on 

the performance of the neural networks with an RMS errors between 1.40 and 1.65 degrees, which 

is still 5 times less than the RMS errors of the PD controller (although it is 1.8 times larger than 

when there is no noise in the data.  

Finally, an interesting result (not visible in this figure) is that when the noise is increasing – more 

than 0.5 degree – NN with more neurons seem to have better performances with up to 20% 

improvement of the accuracy compared to the small neural networks. 



Figure 6. Relative performances of the neural networks to the reference PD controller as a function of the 

noise magnitude in the training data 

3.3 Experimental results 

Figure 7 compares the accuracy – i.e. the RMS error in trajectory tracking - for three different 

configurations with real robotic arms, between the two studied NN architectures: A. fast 

trajectories and B. intermediate trajectories for a 3 DOF robotic arm and C. slow trajectories with 

a 5-DOF serial robotic arm. 

Fig 7A     Fig 7B         Fig 7C 

Figure 7. Performance of trajectory tracking with various NNs, for: A. 3 DOF robotic arm, fast trajecto-

ries; B. 3 DOF robotic arm, intermediate trajectories; C. 5 DOF robotic arm, slow trajectories. 

Figure 7 shows that method 1 allows to get an accuracy close to those obtained with all training 

data with around 100 whereas method 2 requires around 300 trajectories to learn the dynamic 

response of the PD controller, regardless to the used robot arm and the speed of the trajectories. 

 

Table 2. Comparison of the trajectory tracking accuracy (RMS error) of NNs for trajectory 

tracking on two real robot arms  

Trajectory velocities 

(and DOF) 

RMS error with the 

reference PD  

controller 

RMS error with a 

global NN 

RMS error with one 

NN per servomotor 

In degrees (reduction of tracking errors compared to the reference 

controller in %) 

Fast (3 DOF) 5.36 1.12 (79%) 0.88 (84%) 

Intermediate (3 DOF) 8.17 0.45 (94%) 0.33 (96%) 

Slow (5 DOF) 3.18 1.71 (46%) 0.76 (76%) 

  



Table. 2 summarizes the numerical values of RMS errors among the n test trajectories and the rate 

of reduction of the errors compared with the reference PD controller. Especially, the first column 

shows at least 75% reduction of tracking errors compared to this reference controller, and an RMS 

error under 1 degree, whatever the configuration when one NN is used for each servomotor 

(method 1). 

4 DISCUSSION 

The first main result highlighted by the study of the simulated model without reduction ratio in 

Figure 2 is that method 1 – with one NN for each motor – works only when the joint dynamics is 

not coupled on the other joints dynamics – i.e that the movements of other joints does not have 

any – or almost any – influence on the dynamics of the joint. In fact, the motor three at the end of 

the arm is not influenced by the movements of the first two motors. That explains why method 1 

works well for this last motor with a diminution of 91% of the tracking errors whereas it does not 

exceed performances of the PD controller for the first two motors with an RMS error of 0.2 radians 

equal to that of the PD controller. 

The second main result highlighted in Figure 3 is the interest of method 1 when the dynamics of 

each joint is not coupled with the others. In particular, the decoupling of the joint dynamics is 

observed when the term 𝑅𝑀𝑅 of equation (2) becomes negligible compared to the inertia of the 

servomotor 𝐽𝑚. Figure 4 shows it appends for a reduction ratio below 0.15, which corresponds to  

𝐽𝑚 > 50 ⋅ 𝑅𝑀𝑅. In this situation, method 1 requires less data than method 2 to perform the 

learning process: 10 to 100 trajectories versus 100 to 250 trajectories. Consequently, method 1 

outperforms method 2 when the training dataset is composed by data from less than 100 

trajectories and demonstrates similar accuracy when more training data is available with RMS 

errors between 0.034 and 0.048, similar to the RMS errors of method 2, between 0.035 and 0.049. 

On the contrary, Figure 4 also shows the interest of using method 2 for systems with a coupled 

dynamics with a better accuracy when the reduction ratio is 1 with RMS errors 2.5 smaller than 

method 1. In fact, the global NN can learn the dependencies between the different joints and keeps 

an accuracy close to the one obtained with a decoupled dynamics. 

Figure 6 demonstrates two important facts. First, it shows that when the step time of the data used 

for training corresponds to the PD frequency, the RMS errors are 2 times less compared to the 

situations where the step time of the data used for training is 10 times smaller than the PD 

frequency. The conclusion is that to get the best possible accuracy for both methods, the step time 

of the data used for training must corresponds to the PD frequency. Second, the relative accuracy 

of the NN compared to the reference controller is stable whatever the performances of the PD 

controller. A conclusion is that the better accurate the PD controller, the better accurate the 

feedforward NN control system. 

Table 1 shows that a necessary condition to the use of method 2 is to have at least a number of 

neurons equal to the number of motors in the system on each layer in order to converge. 

Furthermore, the comparison of RMS trajectory tracking errors has shown that when this 

condition is satisfied, there is no significant difference on the accuracy – less than 10 percent – 

between all sizes of NNs. This result encourages the use of the smallest possible neural networks 

to limit the number of parameters. For example, the smallest NN presented in Figure 3 is as 

accurate as the other NNs and only requires 15 parameters for the whole 3 DOF robot arm – 5 

parameters per motor – which is around 67 times less than the system in [4] and 6700 times less 

than the architecture in [18] which operates at the torque level. This allows a proportional 

diminution of the calculation time which could be used to increase the frequency and the 

performances of the control system. 

Finally, Figure 6 shows that a big magnitude of noise in the data – more than 0.5 degree – does 

not prevent the NN to improve the trajectory tracking, with RMS errors between 1.4 and 1.65 

degrees, 5 times lower than the PD controller, Even if the NN seems to be able to manage this 

noise during the training, Figure 6 also shows that the best results are obtained when the noise is 



zero – or almost zero with a RMS error of 0.86, 1.8 times lower than when the noise is more than 

0.5 degree. Thus, even if it is not critical, a good practice is to get the best possible encoder 

definition to limit the noise in the data. 

Figure.7 and Table.2 recall the interest of the use of a NN as a feed-forward controller, by 

comparing the accuracy with a standard PD controller on a real 3D printed robotic arm. Both 

methods 1 and 2 allow a good trajectory tracking accuracy for the real robot arms with an RMS 

error under 2 degrees for all tested configurations.  These errors are consistent with the errors of 

the simulated model.  Especially, Figures. 7A and 7B shows that the improvement is even more 

important with the fastest trajectories i.e. where the response time of the PD controller has a 

greater influence. Further, in Table.1 the use of method 1 demonstrates at least a 75% reduction 

of errors for all tested configurations. This result corresponds to the simulation results of Figures 

4 and 5 with an 80% to 90% reduction of tracking errors.  

Experimental results also show that even for the first two motors, the method 2 doesn’t outperform 

the accuracy of the method 1. These results are consistent with the fact that the dynamics of the 

joints is decoupled, i.e. the dynamics of the servomotors prevails on the dynamics of the robotic 

arm due to the real reduction ratio of the servomotors (1/540). 

Finally, the experimental results confirm the main results of the simulated model for a real system: 

the method 1 requires around 3 times less data than the method 2 to learn the dynamics. 

5 CONCLUSION 

In this paper, we compared two methods for trajectory tracking control through a neural network 

used as a feedforward controller for position control: the use of one neural network for each joint 

of the robot arm or the use of one global neural network for the whole system. We first 

demonstrated the interest of the use of a neural network as a feedforward controller with various 

configurations which allows an accurate trajectory tracking – RMS errors always under 3 degrees 

– without any prior information about the dynamic model of the system. Especially, the objective 

was to determine the optimal architecture for the NN and identify the best practices to maximize 

its performances. Thus, we stated that when the dynamics of the joints of the robotic arm is 

decoupled, the use of one neural network for each joint is advised because it requires less data to 

learn the dynamics. We also stated about four practices to get the best possible accuracy: 1. 

optimizing the parameters of the PD controller before training, 2. using a step time to construct 

the training data equal to the step time of the PD controller, 3. limiting the noise by using a high 

resolution encoder, 4. privileging the use of one small neural network per joint when the dynamics 

of the joint is decoupled - i.e when the servomotors have a small reduction ratio – and using small 

neural networks with few neurons to limit the number of parameters and to reduce the calculation 

time. 
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