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ABSTRACT
This paper investigates the identification of nonlinear elastic behavior of real cables,
namely a bending stiffness characteristic, based on real cable experiments. To this
end, two approaches are considered: a data-based approach, where an inverse problem
is formulated, and a model-based approach, utilizing the static equilibrium equations
for Cosserat rods. Both methods are applied to measured data of real cables, and
the obtained results are compared and discussed. Our proposed methods contribute
to the development of realistic constitutive models for cable simulation within the
framework of nonlinear rod models.
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1 INTRODUCTION
Flexible slender structures, such as cables and hoses, are widely used in the automotive industry.
As a result, there is an increasing demand for simulation tools to simulate their mechanical behav-
ior realistically and efficiently. Typical applications of such a simulation tool are illustrated in [1]
and [2].

Cosserat rod theory provides a suitable framework for efficient and geometrically exact model-
ing to simulate slender flexible structures. As outlined in [2], static equilibrium states of elastic
Cosserat rods can be obtained by minimizing their potential energy, which comprises the exter-
nal potential and elastic energy. In [2], as likewise in more or less all publications on Cosserat
rod models, a linear constitutive law is used to formulate the elastic energy of the rod. However,
nonlinear elastic behavior, observed in cyclic pure bending [3] and MeSOMICS bending experi-
ments [4], may play a significant role in complex structures.

In our recent study [5], based on the framework proposed in [2], we developed an iterative method
to incorporate nonlinear elastic behavior. In each iteration, the local bending stiffness constants
are updated, based on a given characteristic, the new equilibrium state is computed by energy min-
imization, and we iterate until the cable state converges. The results of our study were promising,
as they enabled efficient and correct simulations with nonlinear elastic bending behavior.

In this work, we focus on the identification of nonlinear elastic constitutive bending behavior,
which then can be used in the iterative method. Already in [5], we formulated an inverse problem
to determine the nonlinear elastic properties, i.e. a state-dependent bending stiffness characteristic
for given measurement data.

We continue our work of identifying the bending stiffness characteristics of cables by proposing
enhancements of the inverse problem, where pre-curvature is considered as additional optimization
variable. Moreover, we investigate an alternative method (besides the inverse problem) which is
based on the static equilibrium equations for Cosserat rods.



The paper is structured as follows: In Section 2, we briefly sketch our iterative method for simu-
lating nonlinear elastic behavior. Section 3 introduces the real- and virtual bending experiments.
In section 4, we present the inverse problem and show how considering pre-curvature as an ad-
ditional optimization variable enhances the results. Section 5 presents the alternative method for
determining the nonlinear elasticity based on the static equilibrium equations for Cosserat rods.
Finally, in Section 6, we present a conclusion of our work.

2 ITERATIVE METHOD TO SIMULATE NONLINEAR ELASTIC BEHAVIOR
In this section, we briefly sketch the iterative method proposed in [5], which enables the simulation
of nonlinear elastic bending behavior for a Cosserat rod.

2.1 Cosserat rod in two-dimensional space

 
 

 

Figure 1: Left: Continuous Cosserat rod in R2. Right: Discrete Cosserat rod in R2.

We consider a Cosserat rod in two-dimensional space to simulate the bending deformation in the
x− y plane (see Fig. 1). The Cosserat rod is described by the centerline (x(s),y(s))T ∈ R2 and the
rotation angle α(s) parametrizing the local frame

R(s) =
(

cos(α(s)) −sin(α(s))
sin(α(s)) cos(α(s))

)
, (1)

with curve parameter s ∈ [0,L] measuring the arc length of the centerline in the reference configu-
ration of the rod.

The curvature of the moving frame, which approximately corresponds to the curvature of the
centerline, and the material tangent vector containing the components of the centerline tangent
vector w.r.t the local frame, are given as

K(s) = α
′(s) and ΓΓΓ(s) =

(
Γ1(s)
Γ2(s)

)
= R(s)T ·

(
x(s)
y(s)

)′

, (2)

where the difference functions ∆K(s) = K(s)−K0(s) and ∆ΓΓΓ(s) = ΓΓΓ(s)−ΓΓΓ0(s) represent the de-
viation of K(s) and ΓΓΓ(s) from reference values K0(s) and ΓΓΓ0 = (1,0)T .

2.2 Minimization of potential energy
For the case of linear elastic constitutive behavior, the elastic potential energy of the Cosserat rod
is given as

W =
1
2

∫ L

0
∆ΓΓΓ

T (s) ·CΓΓΓ ·∆ΓΓΓ(s)ds+
1
2

∫ L

0
[EI] ·∆K(s)2ds, (3)



where the first term represents the shear and tension energy, and the second term represents the

bending energy. The coefficient matrix CΓΓΓ =

(
[EA] 0

0 [GA]

)
contains the effective tension stiffness

[EA] as well as effective shear stiffness [GA], and [EI] is the effective bending stiffness.

The discrete counterpart can be written as

V =
1
2

N−1

∑
i=0

∆si+1/2 · (∆ΓΓΓi+1/2)
T ·CΓΓΓ ·∆ΓΓΓi+1/2 +

1
2

N

∑
i=0

δ si · [EI] ·∆K2
i , (4)

where the index i denotes vertex quantities at si for i = 0, ...,N and i+1/2 denotes edge-centered
quantities at si+1/2 for i = 0, ...,N − 1. Further details about the derivation from continuous case
can be found in [2].

The static equilibrium of the rod under given boundary conditions can be obtained in an efficient
and robust way by minimizing its potential energy [2].

Since we want to enable nonlinear elastic bending behavior, we introduce a state-dependent (or
more precisely, curvature-dependent) bending stiffness characteristic fEI(κ), as already suggested
in [5]. With this, we rewrite the bending energy term to

VB,nl =
1
2

N

∑
i=0

δ si

∫ Ki

K0,i

∫
ξ

K0,i

fEI(κ)dκdξ , (5)

which for fEI(κ) = [EI] = const. equals the bending energy term in (4).

In principle, one could solve the energy minimization problem with VB,nl as bending energy term.
However, directly solving the energy minimization problem in this more general form is compu-
tationally expensive.

2.3 Iterative update of bending stiffness
In order to maintain the efficiency of the energy minimization problem for the linear elastic case,
we proposed an iterative method where in each step we only consider an energy formulation as
in (4). This can be achieved by iterative updates of local bending stiffness constants, depend-
ing on the current local curvature and the given bending stiffness characteristic according to the
algorithmic procedure suggested in [5]:

In the mth iteration step, a given cable state (xm
i ,y

m
i ), i = 0, ...,N and αm

i+1/2, i = 0, ...,N − 1,
provides corresponding curvatures Km

i such that we can update the constant local bending stiffness
at each vertex according to the given bending stiffness characteristic. Minimizing the potential
energy leads to a new equilibrium state (xm+1

i ,ym+1
i ), α

m+1
i+1/2 and corresponding curvatures Km+1

i .
This process is performed iteratively until the cable state converges.

3 BENDING EXPERIMENT
We perform real as well as virtual bending experiments to study the bending behavior of cables.
The real experiments are performed on the MeSOMICS measurement machine [4].

3.1 Real bending experiment
In the real bending experiment (cf. Fig. 2), the specimen is mounted between two low-friction
bearings, such that we have (ideally) moment-free boundary conditions at both clamping points. To
create various bending deformations, the left clamping point is displaced stepwise towards the right
clamping point while measuring the resulting reaction force at the right clamping point. Moreover,
for each configuration, a camera captures the bending deformation and the cable centerline line is
detected.



Fig. 2 displays top-view pictures of a cable with length L = 181mm and diameter d = 4.6mm.
The three images in Fig. 2 depict cable configurations (a), (b) and (c) with applied displacements
of d, 2d and 3d respectively.

Figure 2: Top-view of real bending experiment. Left: Cable configuration (a), with applied dis-
placement d. Middle: Cable configuration (b), with applied displacement 2d. Right: Cable con-
figuration (c), with applied displacement 3d.

3.2 Virtual bending experiment
In addition to real bending experiments, we also perform virtual bending experiments using the
iterative method from Section 2. The boundary conditions for the virtual experiment are the same
as those used for the real experiment, and we virtually measure the resulting forces for the applied
boundary conditions. Fig. 3 shows an example of the bending deformations in virtual bending
experiment.
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Figure 3: Bending deformations of the initial rod (already slightly bent) and three displacement
steps d, 2d, 3d, with d = 5 ·10−3 m.

4 INVERSE PROBLEM
In this work, we focus on the question how to determine the nonlinear elastic behavior from given
measurement results. In our previous work [5], we already formulated an inverse problem, where
we aimed to find the bending stiffness characteristic which leads to a simulated reaction force that
closely matches the measured target force.

More concretely, we formulate the problem as finding fEI(κ) such that

l =
J

∑
j=1

(FS
j −FG

j )
2 < tol, (6)

where the index j = 1, ...,J denotes the given displacements, FS
j represents the simulated force

computed from the current fEI(κ) at displacement step j and FG
j represents the corresponding

measured target force.



Here, the state-dependent bending stiffness characteristic is modeled using a natural cubic spline
with three control points, denoted by (κ̂0, ˆ[EI]0), (κ̂1, ˆ[EI]1) and (κ̂2, ˆ[EI]2). Thus, a rather small
number of control points represent the unknowns of the inverse problem. For simplicity, we even
assume fixed κ̂0, κ̂1 and κ̂2 and only consider ˆ[EI]0, ˆ[EI]1 and ˆ[EI]2 as optimization variables. The
optimization is achieved by a Levenberg-Marquardt method in MATLAB [6].

From the preliminary results presented in [5] we concluded that it is necessary to add pre-curvature
to the set of optimization variables, as the cable specimens in practice are slightly bent rather than
perfectly straight, and we found that pre-curvature significantly influences the optimization results.

In principle, the pre-curvature K0(s) could vary along the rod. But here, for simplicity and since
for our purpose it sufficiently approximates the reality, we only consider a constant K̂0.

As the set of optimization variables was extended, we also augmented the objective function l
in Equation (6) by an additional term, measuring the difference between simulated and optically
detected curvature

l̂ =
J

∑
j=1

(FS
j −FG

j )
2 +w ·

J

∑
j=1

N

∑
i=0

(KS
j,i −KG

j,i)
2 < tol, (7)

where w is a weighting factor (set to w = 10−3) for the curvature term, KS
j,i are the simulated

curvatures and KG
j,i are the corresponding measured target curvatures. The index j denotes, as for

the forces, the given displacements, while the index i indicates the arc length positions si.

4.1 Inverse problem using virtual measurement data
In order to verify the solution of the inverse problem, virtual measurement data is used. This
means, we simulate the force FG

j for j = 1, ...,J for a known state-dependent bending stiffness
characteristic fEI(κ) and a known pre-curvature K̂0. Thus, we can compare the solution of the
inverse problem, i.e. the identified bending stiffness characteristic and pre-curvature, with the ones
used to generate the virtual measurement data. The used model parameters are shown in Table 1.

parameter d L κ̂0 κ̂1 κ̂2
ˆ[EI]0 ˆ[EI]1 ˆ[EI]2 K̂0

unit [m] [m] [m−1] [m−1] [m−1] [Nm2] [Nm2] [Nm2] [m−1]

value 5 ·10−3 0.2 0 5 10 5 ·10−3 3 ·10−3 2 ·10−3 2

Table 1: Model parameters for virtual bending experiment.
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Figure 4: Evolution of fEI(κ) (left) and K̂0 (right) during optimization.



The optimization process used to determine the fEI(κ) and the pre-curvature K̂0 is illustrated in
Fig. 4. The procedure starts with a constant bending stiffness ([EI] = 0.01Nm2), and iteratively
approaches the reference fEI(κ) (plotted as black dashed line in Fig. 4 (left)), which was used
to generate the virtual measurement data. By the 10th iteration, the optimization achieves good
agreement with the reference fEI(κ). Subsequent iteration steps produce almost the same output.
The right plot of Fig. 4 illustrates the evolution of the pre-curvature K̂0 during the optimization
process. Starting with an initial value 1m−1, also K̂0 approaches its reference value (black dashed
line) after approx. 10 iterations.

Furthermore, the quantities in the objective function, i.e. the simulated force FS
j and curvature KS

j,i,
are shown in Fig. 5. In the left plot, the evolution of forces during optimization is visualized,
while in the right plot the local curvatures are plotted. Here, only the local curvatures of the
maximum deformation (i.e. configuration (c) with applied displacement 3d) are shown. Again,
after 10 iterations the simulated quantities nicely coincide with their reference values.
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Figure 5: Left: Simulated forces FS
j during optimization. Right: Simulated curvatures KS

j,i for
configuration (c) with displacement 3d during optimization.

Summarizing, the above considerations with virtual measurement data show that solving the in-
verse problem leads to the correct bending stiffness characteristic and pre-curvature.

4.2 Inverse problem using real measurement data
In the previous section, we illustrated the feasibility of our optimization approach to solve the in-
verse problem, utilizing virtual measurement data. Now, we want to identify the bending stiffness
characteristic and pre-curvature of a real cable. To this end, the inverse problem is applied to mea-
sured reaction forces and optically detected curvature of the cable. The measured reaction force
is plotted in the right plot of Fig. 6 (dashed black line). The cable configurations from which the
curvature is detected are shown in Fig. 2.

The identified bending stiffness characteristic is visualized in the left plot of Fig. 6. The red solid
line shows the solution of the enhanced inverse problem, i.e. with K̂0 as optimization variable.
For comparison, we also added the resulting bending stiffness characteristic when pre-curvature
is simply set to zero and is not considered as optimization variable (black dashed line). The latter
suffers from nonphysical (negative) values for low curvatures.

However, the corresponding simulated forces (red and green dashed lines in the right plot of Fig. 6)
only show small deviations, from both the reference force and from each other. This illustrates the
necessity consider pre-curvature in the optimization.

In total, also for real cables and corresponding measurement data, the inverse problem provides
physically plausible bending stiffness characteristics, which can be used in the iterative method



presented in Section 2.
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Figure 6: Left: Identified bending stiffness characteristic (with set K̂0 = 0 and K̂0 as optimization
variable) for a real cable. Right: Measured and simulated force (orange: with solid red character-
istic and identified K̂0; green: with dashed black characteristic and K̂0 = 0).

5 BALANCE EQUATIONS AND (κ, fEI(κ))-GRAPH
To assess the results of the inverse problem, we investigate an alternative approach to identify the
bending stiffness characteristic, which is based on the balance equations for a Cosserat rod. Thus,
besides the data-driven inverse problem, we also investigate a model-based approach.

In the absence of external body forces and moments acting on the Cosserat rod, the equilibrium
equations are given by

∂sf = 0, (8)

∂sm+∂sϕϕϕ × f(s) = 0, (9)

where ϕϕϕ(s) = (x(s),y(s),z(s))T ∈R3 is the centerline of the rod, f(s) = ( f x(s), f y(s), f z(s))T ∈R3

is the force vector, and m(s) = (mx(s),my(s),mz(s))T ∈R3 is the moment vector. According to the
derivation given by Simo [7], Equations (8) and (9) hold independent of any assumptions on the
constitutive behavior of the rod, and the considerations in [8] point out that they also hold inde-
pendent of internal kinematic constrains that enforce inextensibility of the rod or inhibit transverse
shearing of its cross sections.

Integrating Equations (8) and (9) leads to

f(s) = f, (10)

m(s)+ϕϕϕ(s)× f =MMM , (11)

with constants f and MMM along the rod.

In two dimensional space, it holds ϕϕϕ(s) = (x(s),y(s),0)T , f(s) = ( f x(s), f y(s),0)T , and m(s) =
(0,0,m(s))T . Thus, Equation (11) can be written as

m(s)+ x(s) · f y − y(s) · f x = M , (12)

where M is a constant scalar.

For our bending experiment (see Fig. 2), we have moment-free boundary conditions at both simply
supported end points m(0) = 0 and m(L) = 0. Since the y-coordinates of both clamping points
are equal and the left point only is displaced in x-direction, the resulting force in y-direction is
vanishing, i.e. f y = 0. By choosing the coordinate system such that y(0) = 0, we obtain M = 0.
Thus, the bending moment at arc length s is given by

m(s) = y(s) · f x. (13)



Furthermore, we can calculate the curvature of the bending line using K(s) = dθ(s)
ds , where θ(s) =

arctan( dy
dx). The state-dependent bending stiffness for curvature K(s) can be obtained by

dm(κ)

dκ

∣∣∣∣
κ=K(s)

=: fEI (K(s)) . (14)

Summarizing, from measured forces as well as the optically detected bending line and correspond-
ing curvature, we can generate a (K(s), fEI(K(s)))-graph. Since our bending experiment provides
an interval of curvatures, with the curvature vanishing at the boundaries and reaching its maximum
in the middle, we get a graph for each configuration.

5.1 Real measurement data
We compute the (κ, fEI(κ))-graphs for the real measurement data, which was already used for the
inverse problem.

The (K(s), fEI(K(s)))-graphs for configuration (a), (b) and (c) (see Fig. 7 (left), corresponding
to pictures in Fig. 2) are plotted in Fig. 7 (right). We observe good consistency among the three
identified graphs, which could be combined to one bending stiffness characteristic. However,
comparing the results with those from the inverse problem (the dashed orange line), we observe
clear deviations. While the order of magnitude is similar, the qualitative behavior significantly
differs. So far, we did not consider pre-curvature in the model-based approach, which might be
one source for the discrepancies. To understand the source of deviations is topic of our current
research.

0.05 0.1 0.15
x [m]

-0.08

-0.06

-0.04

-0.02

0

0.02

y
[m

]

Initial configuration
Configuration (a)
Configuration (b)
Configuration (c)

0 5 10 15
5 [m!1]

-0.01

0

0.01

0.02

B
en

d
in
g
st
i,
n
es
s
[N

m
2
]

(K(s); fEI(K(s))) for con-guration (a)

(K(s); fEI(K(s))) for con-guration (b)

(K(s); fEI(K(s))) for con-guration (c)

Solution of inverse problem with K̂0

as optimization variable

Figure 7: Left: Simulated bending configurations (a), (b) and (c). Right: (K(s), fEI(K(s)))-graphs
determined by method based on balance equations, together with the fEI(κ) identified by inverse
problem.

6 CONCLUSIONS
In summary, in this contribution, we continue our work on the simulation of nonlinear elastic
bending behavior of real cables. While an efficient forward simulation already could be presented
in our previous work [5], we now focus our work on a robust method to identify realistic stiffness
characteristics for the nonlinear elastic bending behavior of cables, which is essential for reliable
simulations. Although the inverse problem seems promising, we intend to assess the results by a
more model-based approach, which is currently investigated.
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