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ABSTRACT 

The method of modelling a load and a rope sling system has a significant impact not 
only on its dynamics but also on the dynamics of the crane. The literature is rather 
dominated by simplified models, in which the load is treated as a lumped mass, less 
frequently as a rigid body, and hanged on one rope, which end is fixed to the centroid 
of the load. The model of a mobile crane with the load as a rigid body hanged 
eccentrically on a rope sling system is presented and discussed in the paper. The 
influence of the eccentricity on the load positioning correctness is examined. 

Keywords: dynamics, mobile crane, load eccentricity, drive flexibility, positioning 
indicator. 

1 INTRODUCTION 

Cranes are the most common handling devices. An important aspect of the crane's operation is 
the control of the position of the load during the manoeuvre and immediately after its completion. 
It is important to know the factors that affect the load behaviour and to predict the load's response 
due to these factors. One of the most essential components which can have an influence on the 
load movement is its eccentric suspension. This means that the attachment point or the centre of 
the block load is shifted relative to the position of the centre of mass of the load and its main axes 
of inertia. Such suspension can lead to additional load swings and twists. Gao et al. in [1] show a 
dynamics model of a bridge crane carrying heterogeneous loads hanged on two ropes. The 
negative impact of the eccentricity on the load movement is compensated by the model based 
control system proposed by the authors. The control strategy is verified experimentally. 
Oscillations of the load in the form of the slender-payload or log are analysed in [2-5]. In 
mathematical model proposed in [2] the load is hanged on two cables to the trolley and only three 
generalized coordinates are taken into account (angle of rotary column, swing angles of the load). 
More complicated model is presented in [3-5] where the load is hanged using double-pendulum 
system. The aforementioned papers focus only on the proper selection of the load control strategy 
to minimize its oscillations and the effect of the load eccentricity is not analysed. Double-
pendulum dynamics due to distributed-mass payloads is investigated also in [6]. Kacalak et al. in 
[7] examine the impact of the sequence of work movements and the range of applied kinematic 
inputs on the accuracy of load positioning. In this case the load is modelled as a box and the load 
eccentricity is not taken into account. In [8] authors study three different variants of a load: 
lumped mass on one hook‑sling, sphere on one hook‑sling, and box on four hook‑slings. The 
results obtained prove that the simplifications used in modelling the load have a huge impact on 
its dynamics. In conclusion, it can be stated that there is a small number of papers dealing with 
the load eccentricity effect on the carried load the dynamics.  

The aim of this work is to examine how the change of direction and the value of eccentricity affect 
the movement of the load in the form of a block. The paper is organized as follows. In section 2 
dynamics model of the crane with an eccentrically suspended load is given. Section 3 presents 
data assumed and numerical simulations results. In this section additional indicators are defined 



for evaluating positioning accuracy. The paper ends with summary. 

2 MATHEMATICAL MODEL OF THE SYSTEM 

The authors propose the mathematical model of a crane with a rigid body load, hanged 
eccentrically on a rope sling system (Fig. 1). The proposed model of the crane includes: crane 
suspension subsystem b , supporting structure mc  (consists of a rotary column, two boom sections 

and a telescopic boom section) and two load lifting subsystems , {1,2}ac  Î
 (refer to hydraulic 

cylinders). The carried load is modelled as block hanged eccentrically on the rope sling system 
( { }

{ , , , }
0,0.1,0.2 m

x y x y
e Î

Î ). 

 

Figure 1. Model of the crane and load 

The crane movement cycle is realized by rigid or flexible drives and divided into five phases, i.e. 

load lowering ( 3( )df ), crane rotating ( 1( )dt ), load telescoping ( 4( )df ), load lifting ( 2( )df ) and load 
free swinging. 

2.1 Kinematics of the crane and load 

In order to describe the kinematics of the system, the formalism of the joint coordinates and the 
Denavit-Hartenberg is used (Fig.2). 

The motion of the crane and load can be expressed by the following generalized coordinates 
vector 
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( ) ( ),c lq q  define the motion of the crane and the load, respectively. 
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Figure 2. Generalized coordinates in its proper coordinate systems 

2.2 Dynamics of the crane and load 

The equations of motion are derived using the Lagrange equations of the second kind. These 
equations are supplemented by the constraint equations formulated in the cut-joints both for rigid 
and flexible drives.  

They can be written as follows: 

- if drives are rigid 
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- if drives are flexible 
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where:  
( ) ( ),c lM M  are the mass matrices of the crane and load, 

( ) ( ),j dC C  are the constraint matrices related to the cut-joints and drives, 
( )jf  is the vector of unknown reaction forces in the cut-joints, 
( )df  is the vector of the unknown driving torque and forces, 
( ) ( ),c lf f  are the vectors of the right side of the dynamics equations, 

( , )( ) ( ) ( )
( )

( , )( ) ( ) ( ) ( )

if rigid drives,

if flexible drives,

m

m

r cc c s
c

r cc c s d

     
    

e g s s
f

e g s s s
, 

( ) ( ) ( ) ( , )l l l r l   f e g s  
( ) ( ),c le e  are the vectors of the Coriolis, gyroscopic, and centrifugal forces, 

J

( )by

( )bx

( )bz

(0)x

(0)y

(0)z

( )bx

( )by
( )bz

1( , )mc lx

1( , )mc ly

1( , )mc lz

( )bψ

( )bθ

( )bφ

2( , )mc lx

2( , )mc ly
1( , )ˆ mc lψ

2( , )mc lz
2( , )ˆ mc lψ

3( , )mc lx

3( , )mc ly
3( , )ˆ mc lψ

3( , )mc lz
4( , )ˆ mc lz

4( , )mc ly

4( , )mc lx

4( , )mc lz
,2 1( , )ac ly

,2 1( , )ac lz
,2 2( , )ac lx

,2 2( , )ac lx

,2 2( , )ac lz
,2 2( , )ac ly,2 2( , )ˆ ac lz

,2 1( , )ˆ ac lψ

,1 1( , )ac ly

,1 1( , )ac lz
,1 2( , )ac lx

,1 2( , )ac lx
,1 2( , )ac lz ,1 2( , )ac ly

,1 2( , )ˆ ac lz
,1 1( , )ˆ ac lψ

( )lx

( )ly
( )lz

( )lψ
( )lθ

( )lφ

( )lz

( )ly
( )lx

,1 1

,1

,1 2

( , )
( )

( , )

ˆ

ˆ

a

a

a

c l
c

c l

ψ

z

   
 

q

1

2

3

4

( , )

( , )
( )

( , )

( , )

ˆ

ˆ

ˆ

ˆ

m

m

m

m

m

c l

c l
c

c l

c l

ψ

ψ

ψ

z

 
 
 
 
 
 

q

( )

( )

( )
( )

( )

( )

( )

b

b

b
b

b

b

b

x

y

z

ψ

θ

φ

 
 
 
 

  
 
 
 
 

q

( )

( )

( )
( )

( )

( )

( )

l

l

l
l

l

l

l

x

y

z

ψ

θ

φ

 
 
 
 

  
 
 
 
 

q

,2 1

,2

,2 2

( , )
( )

( , )

ˆ

ˆ

a

a

a

c l
c

c l

ψ

z

 
  
 

q



( ) ( ),c lg g  are the vectors of the gravity forces, 
( )ss  is the vector of the spring and damping forces formulated to the wheels and outriggers, 
( )ds  is the vector of the spring and damping torque and forces formulated to the flexible drives, 
( , ) ( , ),mr c r ls s  are the vectors of the spring and damping force(s) formulated to the rope(s),  
( ) ( ),j dd d  are the vectors of the right side of the constraints. 

3 NUMERICAL CALCULATIONS 

The crane input is divided into five phases (Fig. 3).  

 

Figure 3. Assumed input courses of drives of the crane. 

The fourth order Runge–Kutta method with a constant step size equal to 410 s  is used to integrate 
the dynamics equations. 

Figs 4 presents the trajectories of 
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0.1or 0.2mxe  . 
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a) rigid drive b) flexible drive 

Figure 5. Trajectories of 
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Fig. 6 presents the trajectories of 
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a) rigid drive b) flexible drive 

Figure 6. Trajectories of 
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 points of the load eccentrically hanged in 
( )ly  axis 

direction 

Fig. 7 presents the trajectories of 
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 points of the block load in the 
(0) (0)x y  plane when 

the load is hanged eccentrically along the bisector of the angle between ( )lx  and 
( )ly  axes. The 

eccentricity is assumed as 0.1or 0.2mxye  . 

 
a) rigid drive b) flexible drive 

Figure 7. Trajectories of 
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 points of the load eccentrically hanged along the 

bisector of the angle between ( )lx  and 
( )ly  axes. 
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In order to evaluate the influence of load hanging eccentricity, the authors propose the following 
indicators: 

 the positioning indicator of the load during the phase of its free swings determined in relation 
to the centre of gravity explained in Fig. 8: 
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Figure 8. Geometrical interpretation of positioning indicator 
( )l
Cd  of the load during the 

phase of its free swings 
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Figure 9. Geometrical interpretation of positioning indicator 
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Kd  of the load during the 

phase of its free swings 
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 the positioning indicator of the load during the phase of its free swings determined in 

relation to 
( )

{1, ,4}

l
i

i
K


 point explained in Fig. 10: 
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Figure 10. Geometrical interpretation of positioning indicator 
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Figs 11-13 present the numerical values of the positioning indicators defined by Eq. 3.1, 3.2, 
and 3.3. 

 
a) rigid drive b) flexible drive 

Figure 11. Numerical values of positioning indicator
( )l
Cd (Fig.7) 

(0)x

(0)y

O ( )
,i

l
Kx min

( )
,i

l
Kx max

( )
,i

l
Ky min

( )
,i

l
Ky max

( ) (0) (0)

{1, ,4}
trajectory of in planel

i i
K


x y



 
( )

1, ,4i

l
K i

h
 

 
( ) ( ) ( )

1, ,4
( , )

i i

l l l
i K K i

K x y
 

e
x

e
y

e
xy

0

0.5

1

1.5

2

2.5

3

3.5

e
x

e
y

e
xy

0

0.5

1

1.5

2

2.5

3

3.5



 
a) rigid drive b) flexible drive 

Figure 12. Numerical values of positioning indicator
( )l
Kd (Fig.8) 

 
a) rigid drive b) flexible drive 

Figure 13. Numerical values of positioning indicator 
( )

{1, ,4}i

l
K i

h
 

(Fig.9) 

e
x

e
y

e
xy

0

0.5

1

1.5

2

2.5

3

3.5

e
x

e
y

e
xy

0

0.5

1

1.5

2

2.5

3

3.5

K(l)
1

K(l)
2

K(l)
3

K(l)
4

0

0.5

1

1.5

2

K(l)
1

K(l)
2

K(l)
3

K(l)
4

0

0.5

1

1.5

2

K(l)
1

K(l)
2

K(l)
3

K(l)
4

0

0.5

1

1.5

2

K(l)
1

K(l)
2

K(l)
3

K(l)
4

0

0.5

1

1.5

2

K(l)
1

K(l)
2

K(l)
3

K(l)
4

0

0.5

1

1.5

2

K(l)
1

K(l)
2

K(l)
3

K(l)
4

0

0.5

1

1.5

2



Analysing the obtained results, the following conclusions can be drawn: 

 the method of the load and the sling modelling have significant influence on the crane’s 
dynamics 

 analysis of the trajectory of the load centre of mass is not sufficient to assess the 
positioning accuracy (Fig.10), 

 adequate to reality assessment of load positioning accuracy in the free swings phase 
requires analysis of the trajectory of load characteristic points (Fig.11 and 12), 

 
( )

{1, ,4}i

l
K i

h
 

 indicator, which is calculated for each characteristic point (Fig.9), is the 

most relevant, 

 the load eccentricity deteriorates the positioning accuracy, especially if the flexibility of 
the drives is taken into account (Fig. 10-12), 

 the greatest impact of the eccentricity of the load suspension on the positioning 

accuracy is observed at points ( )
1

lK  and ( )
3

lK  (Fig.1), which coincide with the direction 

of the assumed eccentricity. 

4 Summary 

The paper analyse the influence of the load eccentricity on the load dynamics. The crane model 
is formulated using the Lagrange equations of the second kind. The model takes into account the 
eccentricity caused by the displacement of the rope sling system relative to the centroid of the 
load. The results obtained show analysis of the trajectory of the centre of mass of the load is 
insufficient, and it is more important to track the trajectory of characteristic points related to the 
load. 
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