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ABSTRACT

One common challenge in control design is handling overdetermined systems, i.e.,
systems with more control inputs than degrees of freedom. The example studied
throughout this contribution is the so-called bow magnet of the magnetic levitation
(Maglev) vehicle Transrapid. The bow levitation magnets placed at the vehicle’s
front and rear represent mechatronic systems with two mechanical degrees of free-
dom, while having three actuator inputs, due to their increased length compared to
the standard levitation magnets. Model predictive control (MPC) as a model-based
control strategy is already successfully implemented for standard levitation magnets
contributing to the levitation system. Therefore, this work studies the application of
nonlinear MPC methods at the bow magnet as an example of an overdetermined sys-
tem. A classical implementation using one individual control algorithm per control
input of the magnet is compared to a newly developed control scheme of one central-
ized controller for the whole magnet. Advantages, as well as disadvantages of both
schemes are discussed.

Keywords: High-speed Maglev Vehicle, Model Predictive Control, Overdetermined
System, Mechatronics.

1 INTRODUCTION
The first step in model-based control design is acquiring simulation models of the system’s under-
lying dynamics. Thereby, different levels of detail describing this dynamics are taken into account.
While control design usually is done with simplified surrogate models, the resulting algorithms are
then analyzed in a highly detailed model of the complete system. Particularly for model predictive
control, suitable descriptions of the system dynamics have to be found to carry out the prediction
of the system’s behavior within the control algorithm.

In case of the Maglev vehicle Transrapid, see Figure 1, the principle of the magnetic wheel as
an autonomous functional unit is realized. Thereby, the vehicle’s levitation system consists of
levitation chassis and levitation magnets forming a decoupling structure. This results in each
half of a standard levitation magnet only being weakly coupled to its adjoint levitation magnets,
allowing for isolated control. As derived in [1], the Lyapunov stability of the complete vehicle
follows from the stability of the individual, weakly coupled subsystems, greatly simplifying the
control design task. Therefore, in the case for standard levitation magnets [2], a control subsystem
can be mapped by a magnetically levitated mass point with one degree of freedom as shown in
Figure 2(a). In contrast, the assumption of weak coupling does not hold for the bow levitation
magnets at the front and rear end of the vehicle being an overdetermined system. Therefore, an
alternative control subsystem for the bow levitation magnets is studied in this contribution taking
the whole magnet body with two degrees of freedom into account as shown in Figure 3.
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Figure 1. Schematic illustration of the Maglev vehicle Transrapid with focus on control of
the bow levitation magnets. Figures adapted from [3] (vehicle model) and [4] (bow magnet).

Method and Contribution. The control of the bow levitation magnet for both subsystem variants
is realized by nonlinear model predictive control. While a control scheme from [2] is adapted for
isolated control of the bow magnet circuits, a new centralized control algorithm is developed for
the complete bow levitation magnet, see Figure 1. Advantages as well as disadvantages of this
newly developed control scheme are discussed with aid of simulations of the surrogate control
subsystem model as well as a highly detailed, large-scale vehicle model.

A detailed description of both control subsystems and a brief introduction to the detailed vehicle
model for analysis purposes, is given in Section 2. The design and implementation of the NMPC
algorithms is covered in Section 3. Finally, results for both control strategies, as well as advantages
and disadvantages in different scenarios, are discussed in Section 4. Section 5 concludes the
contribution.

2 MODELING
The simulation model of each control subsystem, briefly described above, has to map the relevant
dynamics corresponding to the real mechatronic system. In particular, such a model should map
the mechanics of the subsystem and the electrodynamics of the involved electromagnet with suit-
able detail. The model interface in terms of inputs and outputs is motivated by the actuation and
available measurements at the real system.

2.1 Magnetically Levitated Mass for Control Design
For the implementation of one individual control algorithm per electric circuit of a levitation mag-
net, the surrogate control subsystem is given by a magnetically levitated mass with one degree
of freedom z, see Figure 2(a). Its mechanical representation in terms of a second order ordinary
differential equation (ODE) directly follows from Newton’s second law

mz̈ = mg+FL −Fmag(s, I), (1)
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Figure 2. Kinematics for the levitated mass model (a) and general structure of closed-loop
dynamics coupled in Matlab / Simulink (b).

where m denotes the surrogate mass, g the gravitational constant, FL a constant force approximat-
ing the load of the vehicle onto the magnet and Fmag the magnetic force. The latter is a function of
the air gap s between magnet and guideway and the electric current I within the electric circuit of
the electromagnet. The measured air gap s = z−ds results from the vertical position of the mass
and the guideway disturbance ds acting on the model.

Modeling the dynamics of the electromagnet itself follows the approach described in [5] resulting
in one first order nonlinear ODE in the electric current I for the electric circuit of the magnet part

İ =−α(s, ṡ, I) I +β (s, I)U. (2)

Its nonlinearity is characterized by the functions α and β depending on the state I and the inputs s
and ṡ given by the mechanical model. Input to the electric circuit is the voltage U applied by the
controller. The simplified structure of the magnet dynamics make it suitable for control design in
contrast to, e.g., a formulation as differential algebraic equation in the magnetic flux, also described
in [5]. Although simplified, this model, however, still covers all relevant physical effects such as
magnetic saturation, leakage fluxes, and eddy currents. For later simulation of the closed loop the
individual components are coupled in Matlab / Simulink as shown in Figure 2(b). This modular
design allows for quickly testing multiple model variants, e.g., different control algorithms.

For control design, however, the dynamics of the coupled components, i.e., Equations (1) and (2),
are needed in state-space representation with the equilibrium point being at the origin. First, the
system state x := [s, ż, I]T is defined. Second, the equilibrium point (x0,U0) =

(
[s0,0, I0]

T,U0
)

is
shifted to the origin, leading to new coordinates ∆x := x− x0 and ∆U :=U −U0. With those, the
dynamics of the coupled system consisting of mechanics and magnet model can be described by

∆ẋ =

ṡ
z̈
İ

=

 ż
g+ FL−Fmag(s0+∆s, I0+∆I)

m
−α(s, ż, I) I +β (s, I)(U0 +∆U)

=: f(∆x, ∆U). (3)

Note that it formally holds that s = z−ds and further ṡ = ż− ḋs. However, for control design the
disturbance ds is unknown and therefore assumed to be zero, i.e., ds ≡ 0. Moreover, the choice
of state variables is motivated by the available measurements, namely the air gap s, the vertical
acceleration z̈, and the electric current I.

2.2 Bow Magnet Model for Control Design
The control subsystem formed by the magnetically levitated mass is well suited for standard lev-
itation magnets. However, for the overdetermined bow levitation magnet the assumption of weak
coupling between the magnet parts does no longer hold. Here, three independent magnet forces



resulting from three electric circuits act on one rigid body with two degrees of freedom. There-
fore, a larger control subsystem has to be taken into account. In this contribution the whole bow
levitation magnet serves as surrogate model for control design as shown in Figure 3. The partic-
ular structure of the magnet is taken from [4]. On the mechanical side the model consists of the
magnet body with two degrees of freedom z and ϕ collected in the vector of generalized coordi-
nates y := [z,ϕ]T. Three concentrated magnet forces Fmag,i, i ∈ {a,b,c} lift the magnet body, while
static forces FL, j, j ∈ {1,2,3} at its support points approximate the load of the vehicle resting on
the magnet. The equations of motion of the mechanical system are derived in a symbolic manner
with the multibody systems toolbox Neweul-M2 [6] and can formally be expressed as

M(y) ÿ = q(y, ẏ,Fmag). (4)

Thereby M represents the positive definite mass matrix and q is the vector of generalized applied
forces with the system input Fmag := [Fmag,a,Fmag,b,Fmag,c]

T. The interaction with the guideway
is implemented in a unilateral fashion, such that reference points on the guideway, e.g., for gap
measurement, are movable in vertical direction to apply pre-computed disturbance profiles over
time. On the electrical side the poles of each magnet part are interconnected and form one electric
circuit per part. For magnet parts b and c, the magnet poles are wired in a nested way motivated by
the distribution of the resulting concentrated magnet forces. Although this nested wiring leads to
stronger coupling of neighboring circuits via the magnetic flux, each circuit can still be modeled
in an isolated fashion, as the coupling is less than 5% as measured by the current flow. Therefore,
the magnet dynamics are modeled analogously to Section 2.1 by one decoupled ODE per electric
circuit

İi =−αi(si, ṡi, Ii) Ii +βi(si, Ii)Ui, i ∈ {a,b,c} (5)

with the individual output Fmag,i = Fmag,i(si, Ii) as a function of the air gap si and the electric
current Ii. For further use, the inputs Ui are collected in U := [Ua,Ub,Uc]

T, and the vector of the
electric currents is defined as I := [Ia, Ib, Ic]

T. With that, the magnet dynamics of the complete
system can be expressed as

İ =−A(s, ṡ,I)I+B(s,I)U (6)

with diagonal functionals A := diag(αa,αb,αc) and B := diag(βa,βb,βc). Again, for control de-
sign, the coupled system needs to be available in state-space form. Therefore, the state x :=
[yT, ẏT,IT]T is introduced. Analogously to Section 2.1, the equilibrium (x0,U0) is translated to the
origin via ∆x := x−x0 and ∆U := U−U0 leading to the ODE

∆ẋ =

ẏ
ÿ
İ

=

 ẏ
M−1(y)q

(
y, ẏ,Fmag(s,I)

)
−A(s, ṡ,I)I+B(s,I)∆U

=: f(∆x,∆U). (7)

Since the air gaps s := [sa,sb,sc]
T and their time derivatives are not part of the system’s state, they

have to be computed by output equations s = s(y) = s(x0 +∆x) = s(∆x) and ṡ = ṡ(∆x).

2.3 Large-scale Vehicle Model for Analysis
For analysis of the control algorithms developed next, a highly detailed two-dimensional model
of the Transrapid is available, see Figure 1. The model is introduced in [3] and consists of three
vehicle sections traveling over a guideway of infinite length formed by elastic Euler-Bernoulli
beams. Being a two-dimensional longitudinal cut through the vehicle, it maps heave and pitch
motions of all involved rigid components such as car bodies, levitation chassis, and levitation
magnets. The equations of motion are derived with the multibody systems toolbox Neweul-M2 and
parameterized according to the latest Transrapid vehicle TR09. Each magnet’s electric circuit is
equipped with the corresponding electrodynamics equation of form (2) and is controlled by an
individual control input. The coupling of the vehicle components again adopts the structure shown
in Figure 2(b).
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Figure 3. Control subsystem for the bow levitation magnet consisting of rigid body dynamics,
magnet model. The closed-loop is formed with either three individually acting control units
or one centralized control unit.

3 CONTROL DESIGN
This section deals with designing two model predictive control strategies for the bow levitation
magnet. First, the design of one centralized MPC algorithm for the control subsystem introduced
in Section 2.2 is described. Second, one individual MPC algorithm per electric circuit, equipped
with the prediction model from Section 2.1, is designed following a particular offset-free approach
proposed in [2].

3.1 Equilibrium Points
Prior to the specific design of control algorithms, a brief discussion about finding equilibrium
points for the overdetermined system is needed. In general, the desired nominal air gap between
magnet and guideway together with the equations of motion from the system’s mechanics de-
termines the magnet forces in equilibrium. This assignment, however, is not unique since three
independent magnet forces act on the magnet body with two degrees of freedom. One approach
for given generalized coordinates y0 is to use the additional degree of freedom in design by solving
an optimization problem of the form,

minimize
Fmag,0

FT
mag,0 Q0 Fmag,0 (8a)

subject to q(y0,0,Fmag,0) = 0. (8b)

The constraint in Equation (8b) enforces the mechanical equilibrium according to Equation (4),
while the cost function in (8a) can be used to influence the force distribution. In case of the bow
levitation magnet, quadratic costs with positive definite weighting matrix Q0 are applied. Knowl-
edge of the nominal magnet force per magnet part then allows computing the nominal electric
current and voltage via the magnet model.

3.2 Centralized MPC Design
In contrast to classical control schemes, e.g., a linear quadratic regulator, where a control law is
computed offline, the control law in model predictive control is computed online. Therefore, at
a given point in time an open-loop optimal control problem (OCP) is solved predicting the sys-
tem’s behavior over a certain time interval, namely the prediction horizon. Solution to the OCP
is an optimal input trajectory to the system. However, only the first part of this input trajectory is
applied to the real plant up to the next sampling point, when the process is repeated. This leads
to the prediction horizon moving forward in time, which is why MPC is often called receding



horizon control. One major advantage in comparison to classical control algorithms is the possi-
bility to directly handle constraints on the system dynamics and inputs within the OCP. A general
introduction to nonlinear model predictive can be found in [7].

With these prerequisites, the formulation of an MPC scheme for the control subsystem (7) of the
whole bow levitation magnet requires only one further topic to mention, namely the use of an
offset-free scheme. The latter ensures offset-free tracking in presence of quasi-static disturbances,
such as different load of the vehicle. Therefore, the system dynamics (7) is augmented by an
integral state wy yielding

∆ẋaug =

[
∆ẋ
ẇy

]
=

[
f(∆x,∆U)

y− y0

]
=: f aug(∆xaug,∆U). (9)

More involved offset-free strategies are available and can, e.g., be found in [2]. In sum, the aug-
mented open-loop dynamics consists of nine states and three input variables. The resulting non-
linear MPC scheme at time t can finally be formulated in continuous time and reads as

minimize
∆U(·; t)

∫ t+T

t
∆xT

aug(τ; t)Q∆xaug(τ; t)+∆UT(τ; t)R∆U(τ; t) dτ (10a)

subject to ∆ẋaug(τ; t) = f aug
(
∆xaug(τ; t),∆U(τ; t)

)
, ∀τ ∈ (t, t +T ) (10b)

xaug(t; t) = xaug(t), (10c)

Umin ≤U0,i +∆Ui(τ; t)≤Umax, ∀τ ∈ [t, t +T ], i ∈ {a,b,c} . (10d)

Therein, ∆U(·; t) denotes the control input to system (9) predicted at time t. Equation (10b)
ensures the predicted state xaug(·; t) to comply with the system dynamics, initialized by assuming
a full state measurement in Equation (10c). With Equation (10d), actuator constraints of the real-
world system are satisfied. The cost function (10a) is chosen to be convex quadratic with Q ≥ 0
and R > 0. Note that path and terminal constraints as well as the proof for theoretical stability are
omitted due to practical reasons.

3.3 Individual MPC Design
For comparison, one individual model predictive controller per control input of the bow levitation
magnet is designed, as done in [2]. The procedure is analog to Section 3.2 using the control
subsystem’s dynamics (3). Again, the dynamics is augmented by an integral state allowing for
offset-free stabilization of the origin

∆ẋaug =

[
∆ẋ
ẇs

]
=

[
f(∆x,∆U)

s− s0

]
=: f aug(∆xaug,∆U). (11)

The optimal control problem can be stated equivalently to (10) with adapted dimensions for Q and
R, and with just four states and one input, respectively.

3.4 MPC Implementation
The MPC schemes developed in Sections 3.3 and 3.2 are implemented with GRAMPC [8]. The
tool implements an implicit MPC algorithm with indirect discretization in form of a gradient
projection method, suitable for fast MPC and even deployable to embedded systems. For tech-
nical details the interested reader is referred to [8]. The system dynamics, cost function, and
constraint functions are set up with CasADi [9], allowing the computation of gradients needed
by GRAMPC via automatic differentiation. Furthermore, CasADi’s built-in export capabilities
are used to convert the derived Matlab functions to C. The resulting algorithm can be run as a
Simulink S-function or with only little further effort on a microcontroller in an existing Processor-
in-the-Loop setup [10].
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Figure 4. Air gap histograms for simulation of the levitated bow magnet model in nominal
operation at 400km/h for both control schemes.

4 RESULTS
In the following, the newly developed MPC scheme from Section 3.2 is compared to the approach
with individual MPC controllers, adapted in Section 3.3, for various simulation scenarios. First,
the behavior of both algorithms is investigated with the model of the single levitated bow magnet
from Section 2.2. The simulation is carried out at a speed of 400km/h influenced by a statistical
model of the guideway disturbances introduced in [11]. As a measure of performance, the air gap
normalized by the desired air gap s0 is plotted in histograms in Figure 4. One observes the central-
ized MPC approach being able to track the desired air gap better than the individual controllers.
Especially at magnet parts b and c, differences in control performance are visible. Some effort
on tuning the individual control algorithms to match the performance of the centralized MPC was
made, however, without any remarkable improvements.

The main advantage of the centralized control approach for the overdetermined system can be seen
in a scenario with static measurement error, e.g., due to production tolerance. Therefore, the air
gap sc is manipulated at t = 2s by adding 20% of the nominal air gap to the measure, an arguably
large offset for demonstration reasons. The simulation is done without the high frequent guideway
disturbance to see the effect more clearly. Figures 5 and 6 show the resulting current and resulting
air gaps at the plant, respectively, for both control strategies. Both control algorithms immediately
try to counter the observed step in the gap measurement. However, due to the magnet body being
modeled rigid, the nominal air gap as seen by the controller cannot simultaneously be reached
at all three magnet parts anymore. For the isolated controllers this leads to contrary behavior,
visible as drift in the current signals, finally reaching instability at t ≈ 10s. On the other hand, the
single, centralized control algorithm utilizes its information about the whole magnet’s state to find
an optimal trade-off in terms of its cost function. After a transition phase, this results in slightly
tilting the magnet body.

Finally, the performance of the two control algorithms is evaluated in the large-scale vehicle model
introduced in Section 2.3. With the model, a highly realistic environment for analyzing and evalu-
ating different control approaches is given. For this study, both introduced control algorithms are
implemented at the bow magnet, while the remaining standard levitation magnets are controlled
by further individual MPC controllers presented in [2]. Control performance is analyzed at the
rear bow magnet, being the most challenging magnet to control as pointed out in [3]. Figure 7
shows the resulting air gaps for each bow magnet part obtained during simulation of the vehicle
model at 300km/h on the elastic guideway. Similar to the previously shown results at the isolated
bow magnet model, compare Figure 4, the centralized control algorithm achieves better control
performance by means of a smaller deviation from the desired air gap s0.
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Figure 5. Current signals of the bow levitation magnet under static measurement error.
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Figure 6. Mechanical air gaps at the magnet when a measurement error of 2mm is introduced
at t = 2s into the control system.

With these results the centralized control algorithm for the whole magnet is shown beneficial
compared to the classical approach with three individually acting controllers. However, there are
also some disadvantages to mention, especially regarding the implementation at the real system.
The control subsystem for the whole bow magnet, formulated in Equation (9), leads to overall nine
states as well as three inputs with individual input constraints to handle by the optimal control
problem (10). Despite recent developments in numerical algorithms to solve problem (10), a real-
time capable implementation with the increased number of states and inputs is still challenging.
On the other hand, for the individual control approach real-time capability can be shown [10].
Furthermore, the discussed algorithm assumes full state measurement which is not available at the
real-world system. Additional techniques such as state filtering or observer-based approaches have
to be deployed, again, introducing a non-trivial problem due to the system being overdetermined.
Finally, concerning failure of a control unit, three individually acting controllers come with an
inherent redundancy, which is not the case for the centralized control algorithm.
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Figure 7. Control performance of both control strategies at the rear bow magnet in the large-
scale vehicle model shown in Figure 1.

5 CONCLUSION
In this contribution, nonlinear model predictive control is successfully implemented for an overde-
termined system, namely the bow levitation magnet of the Transrapid. Following the approach of
the magnetic wheel, three individual MPC controllers acting on the magnet are adapted from [2].
In contrast, a newly developed control algorithm takes the system dynamics of the whole bow
magnet into account forming a centralized control approach. The latter is shown beneficial in
nominal operation as well as in special scenarios, e.g., in presence of static measurement offsets.
For implementation at the real-world system, however, further aspects have to be considered, real-
time capability and redundancy of the introduced control strategy being two of them. Especially
concerning real-time capability, the deployment of the developed control algorithm to an existing
Processor-in-the-Loop setup [10] would give valuable insight. Future work may address these
challenges or study the application of alternative control design methods for the system at hand.
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