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ABSTRACT

With the rise of soft robotic applications modeling and control of soft material robots
becomes more and more important. Due to their softness and the resulting large elas-
tic deformations conventional modeling and control approaches usually cannot be
applied and new solutions are currently being developed. This paper is a contribution
to solving this problem. In a first step it is shown that the full dynamic modeling of
a tendon-actuated beam-shaped soft robot based on the Cosserat rod theory. In a sec-
ond step an open-loop kinematic controller for trajectory tracking control is presented.
The controller is based on a neural-network approximation of the forward kinematics
of the soft robot. Finally, the controller is tested using the simulation model set up in
the first step, and then evaluated experimentally.
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1 INTRODUCTION
Soft material robots are an emerging and fast-growing field of research with potential application in
various fields. In contrast to conventional robots, which are usually fabricated out of high-stiffness
materials such as steel, soft material robots are mostly fabricated out of soft materials like, silicone
or foam with a stiffness of only 104 . . .109 Pa. This usually results in large deformations such that
conventional components, designs and control methodologies are not applicable. Therefore, new
actuators, sensors, modeling and control concepts are currently developed.

In this paper modeling and trajectory tracking control of a simple tendon-actuated beam-shaped
soft robot is presented. The soft robot is simulated with a simulation model based on the Cosserat
rod theory. For control an open-loop model-free kinematic controller is used. The forward kine-
matics are thereby approximated with a small neural network. This saves computational costs and
allows to compensate modeling inaccuracies of the physical robot. The controller is first examined
in simulations and then in experiments.

1.1 Control approaches for soft robots
There is a large amount of work related to the control of soft material robots. In the following,
a short overview is given. A more detailed overview can e.g. be found in [1, 2, 3]. Soft robot
control methods can be categorized into two groups: model-based and model-free control. Ad-
ditionally, the control approaches can be divided into kinematic control, where the dynamics of
the soft robot are neglected, and dynamic control, where the dynamics of the soft robot are con-
sidered [2]. Thereby, in the soft robotics literature, the terms "static controller" and "kinematic
controller" are used interchangeably. Furthermore, control methods can be divided into open-loop
and closed-loop control [3]. As soft robots can usually deform continuously they often have a very
large number of degrees of freedom and are therefore underactuated. Additionally, they are often
redundantly actuated. This makes control much more challenging than for most rigid robots.

In soft robotics kinematic controllers are the most widely used and also usually most simple con-
trollers. As here the dynamics are neglected, only comparatively slow movements are possible



and the trajectory tracking control error is usually larger than for dynamic controllers. However,
this can be accepted for many soft robotic applications. Model-based kinematic controllers for soft
robots mostly rely on the direct inversion of the kinematics [4] or, if this is not possible, differential
inverse kinematics [5, 6, 7] are used. Model-free kinematic controllers are especially popular for
highly nonlinear and nonuniform systems which are difficult to model. In model-free kinematic
control, the mapping of actuation variables to control variables is usually learned by a neural net-
work, see e.g. [8, 9]. For redundant soft robots, the relationship between actuation variables and
control variables is not unique. In this case, the current configuration of the soft robot has to be
considered for the determination of the control variables to achieve a smooth movement [10, 11].

For faster movements and higher accuracy requirements, kinematic control is often insufficient
and dynamic controllers are used instead. Compared to kinematic control, dynamic control is
usually much more computationally expensive. A popular control approach is model predictive
control in combination with mechanical models [12, 13] and data driven models [14, 15, 16]. But
also, PD-controllers [17, 18], sliding mode controllers [19], and LQR-controllers [1], as well as
reinforcement learning approaches [20, 21, 22] are used.

2 TRAJECTORY TRACKING CONTROL PROBLEM
In this contribution the trajectory tracking of a simple beam shaped soft robot as shown in fig. 1
is considered in simulation and experiment. Thereby a model-free kinematic control approach is
chosen. The soft robot is actuated by three tendons which allows a movement of the robot’s tip
on a semi-sphere. In the following, the experimental setup and the used simulation model are
described.

2.1 Experimental setup
In this contribution a beam-shaped soft robot with a length of L = 120mm and a radius of r =
20mm is considered. The soft robot is shown in fig. 1. The most important geometric and material
parameters are listed in tab. 1. The soft robot is made out of silicone of type ”HT45”. It is actuated
by three servos via tendons which are evenly distributed along the circumference of the soft robot.
In the following, it is referred to the three tendons as a tendon triple. This allows to directly control
the tendon length sq for all three tendons. Here, q = 1 . . .3 is the index of the tendon.

As in this contribution kinematic control is considered, which means that the dynamics are ne-
glected, there is a direct relationship between the tendon length sq and the tendon forces Fq. This
will be used later on. Additionally, it can be assumed for the controller design, that the soft robot
performs a pure bending movement and elongation can be neglected. From this follows that only
two of the three tendon lengths s1 . . .s3 can be chosen independently of each other. The third ten-
don length then results from the kinematics of the soft robot. This has to be considered for the
experimental setup. For reference measurements of the tip position, a cube with AprilTags [23] on
its sides is mounted at the tip of the soft robot. This allows to track the tip position with a simple
webcam.

2.2 Simulation model
Soft robots often have the shape of a long, slender beam with dominant bending deformation.
Other forms of deformations can often be neglected. Therefore, for the modeling of soft robots
mostly beam models such as the piecewise constant curvature (PCC) model or the Cosserat rod
theory, also called geometrically exact rod theory, are used [3]. The PCC only models bending
and torsion, while the Cosserat rod model additionally considers elongation. In this contribution a
Cosserat rod model based on [24] with a discretization into 6 segments is used. In the following,
the used model is briefly summarized. The derivation of the equation of motion is shown in detail
in [24] and [25] and therefore omitted here.



Table 1: Geometric and material parameters of the used
soft robot.

value unit
total length L 120 [mm]

radius r 20 [mm]

density ρ 1100 [kg/m3]

Young’s modulus E 2.04 [MPa]
Poisson’s ratio ν 0.49 [-]
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r
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Figure 1: Soft robot.

2.2.1 Beam model
The used Cosserat rod model describes the continuous beam with

xxx(s, t) : [0,L]× [0,T ]→ R3 (1)

ppp(s, t) : [0,L]× [0,T ]→ S3. (2)

The vector xxx(s, t) represents the position of a point of the beam along the center line of th beam s at
time t. The orientation is determined by the quaternions ppp(s, t). The beam is spatially discretized
along the beam coordinate on a staggered grid as shown in fig. 2. The translatory degrees of
freedom are located at the vertices, the rotatory degrees of freedom are located at the segment
midpoints as quaternions. The model can be written as a set of ordinary differential equations of
form

ẍxxn = ggg(ẋxxn, ṗppn,xxxn, pppn, t, fff tendon,i, llltendon,i) (3)

p̈ppn = hhh(ẋxxn, ṗppn,xxxn, pppn, t, fff tendon,i, llltendon,i). (4)

Here fff tendon,i and llltendon,i are the forces and torques resulting from the tendon actuation. Their
derivation is described in in sec. 2.2.2.

x1

Figure 2: Schematic illustration of the
discretized beam.
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Figure 3: Position of tendon routing points and tendon
force vectors on a disk.

2.2.2 Actuation forces and torques
The forces and torques resulting from the cable actuation can be derived analogously to the proce-
dure described in [1] for the planar case. In the following, the extension to the 3D case is briefly
shown. For the calculation of the actuation forces friction in the tendon guidance is neglected.



Therefore, for each tendon the tendon force Fq is constant over the whole tendon length. Here, the
index q = 1 . . .3 is the index of the tendon. A tendon triple can either pass through a disk, end at
the disk or not reach this disk. It is assumed, that the tendon triple passes the first k−1 disks and
ends at disk k. Note that actuation forces also act on all disks which the tendon triple only passes.
For the calculation of the actuation forces the routing points of the tendons through the disks are
of importance. These are shown in fig. 3 for the configuration of tendons used in this contribution.
The locations of the routing points in relation to the center of gravity Si of a disk is given by

rrr1,i,local = rtendon
[
1 0 0

]T
, (5)

rrr2,i,local = rtendon
[
−1/2

√
2/2 0

]T
. (6)

rrr3,i,local = rtendon
[
−1/2 −

√
2/2 0

]T
. (7)

In global coordinates this can be written as

rrrq,i = rrrq,i−1 +RRRirrrq,i,local. (8)

From the position of the routing points rrrq,i now the direction of the tendons, and therewith the
direction of the tendon forces, from disk i to disk i−1 can be calculated by

cccq,i =
rrrq,i−1 − rrrq,i

∥rrrq,i−1 − rrrq,i∥
. (9)

From this, the forces fff tendon,i and torques llltendon,i acting on disk i result in

fff tendon,i =



3
∑

q=1
(cccq,iFq − cccq,i+1Fq) i < k

3
∑

q=1
cccq,iFq i = k

000 otherwise

, (10)

llltendon,i =



3
∑

q=1

((
RRRi · rrri,q,local

)
× (cccq,iFq − cccq,i+1Fq)

)
i < k

3
∑

q=1

((
RRRi · rrri,q,local

)
× (−cccq,iFq)

)
i = k

000 otherwise

. (11)

3 CONTROLLER SETUP FOR TRAJECTORY TRACKING CONTROL
3.1 Trajectory tracking problem
The trajectory tracking problem of the tip position xxxN can be formulated as a set of points
T = {xxxN,1, . . . ,xxxN,k−1,xxxN,k,xxxN,k+1, . . . ,xxxN,K} which have to be reached at specified points of time
t = t0(T )tK with k = 1(1)K as the number of trajectory points. For simplicity a constant sample-
time T can be assumed. Using these, the control variables ccck ∈ Rn must be found that lead to
the location xxxN,k, where n is the number of independent actuators. In each timestep the control
variables ccck have to be determined such that the trajectory is followed. This can be formulated as
an optimization problem for the tracking error e:

ccck = argmin
ccc

e(xxxN,k,ccc) = argmin
ccc

∥xxxN,k − xxxN(ccc)∥2 (12)

where

e = ∥xxxN,k − xxxN(ccc)∥2 (13)
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Figure 4: Control algorithm for determining control variables ccc.

is the trajectory tracking error. The function xxxN(ccc) represents the forward kinematics of the system.
For the system considered in this contribution the control variables ccck are the tendon forces Fi of
the three tendons in simulation and the tendon length si in experiment. As described in sec. 2.1
these two quantities can be exchanged in a kinematic approach.

3.2 Controller
For many systems the optimization problem from eq. (12) cannot be solved analytically. Therefore,
in this contribution an approach based on [9, 26] is used. The control algorithm used is visualized
in fig. 4. Starting from an initial value ccck for the control variables, the control error e is determined
by the forward kinematics. If the error is larger than a maximum allowable error emax, an update
step for the control variables is performed:

ccck,new = ccck +h
∂e
∂ccc

, (14)

with

∂e
∂ccc

=−2(xxxN,k − xxxN(ccc))JJJ(ccc). (15)

The central difference approximation for the Jacobian JJJi of the forward kinematics sss(ccc) is

JJJi =
∂xxxN(ccc)

∂ci
≈ xxxN(. . . ,ci +∆c, . . .)− xxxN(. . . ,ci −∆c, . . .)

2∆c
. (16)

The newly calculated control variables are then fed back into the forward kinematics. This process
is repeated until the error is less than the maximum allowed error emax or the maximum number
of iterations jmax is reached. This is to prevent the algorithm from remaining in an infinite loop if
e.g. a point outside the workspace is part of the trajectory.

3.3 Approximation of the forward kinematics with a neural network
For real-time applications the usage of full mechanical models, which are often very computation-
ally intensive, is often not possible. In addition, it is also very difficult to account for manufactur-
ing inaccuracies in these models. Therefore, here the forward kinematics xxxN(ccc) are approximated
with a neural network N with xxxN(ccc) = N (ccc). In this contribution a small and lightweight neural



network with two hidden layers with a tanh activation function is used for the trajectory tracking
problem in simulation. The hidden layers have 4 neurons each. For the experimental realization a
slightly more complex neural network with three hidden layers is required. This can be explained
by the fact that manufacturing inaccuracies, which should be learned as well to achieve accurate
control, make the system more complex. Therefore, also a more complex neural network with
more parameters is needed. Finally, it is noted that in the experiments performed in this contribu-
tion the neural network was 25 times faster than the solution of the equation of motion.

For the training of the neural network for both, in simulations and in experiments, a dataset con-
taining the control variables ccc and the tip position is collected. In simulation, thereby the forces Fq

of all three tendons are varied with Fq = 0(0.01)0.4N. Forces are only applied to two tendons
while the force for the third tendon is kept at 0N. In a total this results in 5043 different loading
cases. In the experiment the tendon length sq is varied between sq = 0(2)20mm. This results in
363 different combinations, since only two of the tendon lengths si can be chosen independently.
For each load case the individual simulations or experiments are executed until the robot no longer
performs any measurable motion. The position of the soft robot is then stored with the associated
load cases.

4 RESULTS
In the following, the performance of the trajectory tracking controller is described in simulations
and experiment. In both cases, the training results are shown first, followed by the trajectory
tracking results. The trajectories examined are each tracked uniformly within T = 50s.

4.1 Simulation results
Firstly, the NN is trained using the simulation results. In fig. 5 an excerpt of the projection of
the tip position into the x− y plane of the collected training data as well as the prediction of the
trained NN is shown. In fig. 6 a comparison between the validation data and the prediction of the
neural network is shown. A good agreement between the simulations and the predictions of the
neural network can be seen. Only for large tendon forces there is a slight difference between the
training data and the prediction of the neural network. For practical applications this error is most
likely not relevant, as other errors, mainly due to unmodeled effects, typically result in much larger
errors. However, with a more complex neural network with more parameters the error could be
further reduced.
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Figure 5: 2D projection of training data and NN
prediction.
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Figure 6: Results of NN on validation data.

For the investigation of the control performance, in a first step a circular trajectory T is tracked.
This trajectory starts with a straight-line segment leading from the tip position origin to a circular
path and then follows this circular path with a radius of 50mm. For the maximum allowed error,



emax = (2mm)2 and for the maximum number of loop repetitions jmax = 100 is chosen. In fig. 7
the desired trajectory (T ), the trajectory calculated using the neural network (NN) and the tracked
trajectory (ODE) are shown. Thereby, the output from the NN is applied to the equations of
motion. A good correspondence of all three trajectories can be observed. This is confirmed by th
error plot shown in fig. 8. In the plot the distance error and the maximum allowed error are shown.
Both the error eODE of the solution of the ODE and the error eNN of the calculated quantities by the
neural network are predominantly smaller than the specified maximum allowed error. At certain
points, the error eNN increases abruptly. A closer look at these points shows that here a force is
only applied to one tendon.

-50 0 50

-50

0

50

x [mm]

y
[m

m
]

T xxxN,NN xxxN,ODE

Figure 7: Tracking of circular trajectory.
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Figure 8: Absolute error of the controller and the
NN.

4.2 Experimental results
The training results of the neural network in experiment are shown in fig. 9. They are comparable
to the results in simulation. The main difference is that the data points are clearly divided into
three sectors. This can be explained by inaccuracies in the experimental setup. The gaps corre-
spond to load cases where only one tendon is loaded for actuation. A small number of data points
is missing due to measurement errors when the camera did not correctly detect the tags. As ex-
pected, the neural network’s accuracy is lower than in simulation, but overall still provides a good
approximation of the forward kinematics.

As in simulation, in a first step the circular trajectory T is tracked. In fig. 10 the desired trajec-
tory T , the actually tracked trajectory xxxN,exp in the experiment and the trajectory calculated by the
neural network xxxN,NN are shown. It can be seen that the trajectory calculated by the neural network
xxxN,NN is very similar to the desired trajectory and almost always stays within the allowed range.
The actually tracked trajectory xxxN,exp, however, has much larger deviations, particularly in the up-
per right and lower left quadrants. In the other two quadrants the control error is much smaller.
Further experiments have shown that the tracked trajectory is very accurately repeatable. This is
shown in fig. 11 for 4 repetitions of the experiment. The small deviations between the four rep-
etitions of the experiment can be explained with measurement errors of the used camera tracking
system. The reproducibility indicates that there is a systematic error resulting from inaccuracies
in the approximation of the forward kinematics with the neural network.

Finally, the influence of the movement speed of the soft robot on the controller performance is
investigated. For this purpose, the travel time T of the trajectory is varied between 10...50s. Faster
movements cannot be realized with the experimental setup used. The results are shown in fig. 12.
No influence of the speed can be determined. Small differences between the trajectories can be
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Figure 10: Tracking of circular trajectory.
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explained by measurement errors of the camera tracking system. This confirms the assumption
that the dynamics of the system can be neglected and kinematic controllers are sufficient for the
control of this soft robot.

5 CONCLUSIONS
In this contribution we presented the modeling and kinematic control of a beam-shaped tendon-
actuated soft robot. For reference measurements a camera tracking system based on AprilTags was
used to measure the position of the tip of the soft robot. In a first step a full dynamic mechanical
model of the soft robot based on the Cosserat rod theory was presented. In a second step a kine-
matic controller based on a neural network approximation of the forward kinematics was presented
and tested in simulations and experiments. In simulations, very accurate trajectory tracking could
be archived. In experiments, still good results could be archived. But, as expected, the trajectory
tracking control error is much larger than in simulation. The control error can probably be further
reduced by using a more complex neural network, however, this comes with additional computa-
tional costs and requires more training data. Finally, it was shown, that kinematic controllers are
sufficient for the considered control task of this soft material robot and dynamic controllers most
likely do not have an advantage here.
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