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ABSTRACT

The most significant beam model for large deformations is the geometrically exact
beam, whose configuration manifold is a complex mathematical structure represented
by R× SO(3). To solve the partial differential equation that describes the beam’s
behavior, the Finite Element Method (FEM) is typically employed. However, dis-
cretizing SO(3) using finite elements requires an alternative approach due to its matrix
group structure, which cannot be directly discretized with the classical additive finite
element approach. Unit quaternions offer an interesting parametrization of SO(3) and
are therefore utilized. Although unit quaternions have a complex mathematical struc-
ture, their unit length can be maintained using a normalization technique while ap-
plying an additive discretization technique. We incorporate this innovative approach
with the Isogeometric Analysis, which is known to offer advantages over classical
FEM with Lagrangian elements, particularly for dynamic problems.

Keywords: geometrically exact beam, Simo-Reissner beam, quaternion, geodesic
finite element,isogeometric analysis.

1 Introduction
Beam models play an important role in the efficient simulation of slender structures in many differ-
ent fields of engineering. The most important beam model for large displacements is the so-called
geometrically exact beam also often referred to as Simo-Reissner beam [1, 2].
The configuration manifold of the beam model is given by R3 ×SO(3) as it describes the position
of the centerline as well as the orientation of the beam’s cross-section. The partial differential
equation describing the behavior of the beam is usually solved with the help of the Finite Element
Method (FEM). So it becomes necessary to discretize the special orthogonal group SO(3) in a
finite element sense.
A finite element discretization of the special orthogonal group is rather difficult as SO(3) is not
an abelian, additive group but a matrix group under multiplication [3]. To obtain an optimal con-
vergence behavior, when discretizing non-linear manifolds such as the SO(3) with finite elements
the geometric structure of the manifold, must be conserved [4, 5]. To circumvent this problem
Simo [2] proposed a discretization on the level of incremental rotations, again a linear space as
it coincides with the tangent space T MSO(3) of SO(3). However, it was shown by Crisfield and
Jelenić [6] that this leads to a path-dependence behavior.
Another approach was proposed in [7, 8] where the so-called directors, a moving frame, are dis-
cretized. The directors are discretized additively, so in a classical finite element sense, without
additional effort. Hereby it becomes necessary to introduce constraints to ensure the mutual or-
thogonality as well as normality of the directors, which leads to a rather stiff behavior and is, thus,
prune to locking. Furthermore, it leads to a large increase in the unknowns of the problem. As
shown in [9, 10] an additional projection using the polar decomposition is necessary to conserve
the underlying structure of the directors, which is SO(3). Otherwise, the convergence behavior
of higher order discretization cannot be expected to be optimal. In the polar decomposition, an



eigenvalue problem has to be solved, which is very costly in terms of computational effort.
The use of unit quaternions for the parametrization of SO(3) presents an interesting alternative
[11]. They represent an extension to the complex numbers and like them, they can be used to
parametrize rotations. But instead of two-dimensional rotations, quaternions of unit length are
used to display rotation in the three-dimensional space. They are often employed in computer
graphics as even though they do not represent the minimal set of coordinates can be used very
efficiently to compute tensors from SO(3) as there is no need to evaluate trigonometric functions
while doing so. To obtain an optimal convergence behavior, when discretizing unit quaternion
with finite elements the geometric structure S3, which is parametrized by them, should be con-
served [4, 5]. This results in the need to conserve the length of the unit quaternions at every point
of the discretized domain.
A possibility to conserve complex structures of arbitrary Riemann manifolds are the so-called
geodesic finite elements (GFE) [4, 12], for which optimal convergence behavior is not just shown
numerically but is proven analytically [5]. They cover all kinds of rotational parametrizations due
to their general formulation. The approach published by Crisfield [6] falls into this category as well
as the spherical linear interpolation (SLERP) algorithm [11], the standard approach in computer
graphics. In [4] this element formulation is applied to the geometrically exact beam formulation
in a quaternion formulation. GFEs have, however, not the structure of a classical finite element
discretization, which makes the implementation more difficult. Further, it leads to the need to
evaluate trigonometric functions multiple times in each step of the Netwon iteration making them
computationally costly.
Another possibility was proposed by in [8] and in a more general approach in [9, 10]. Here, the unit
length of quaternions can be assured using a projection, while still applying an additive discretiza-
tion technique. In [10] the convergence behavior of these so-called projection-based elements is
investigated analytically and numerically. It is found to be optimal. Furthermore, it is shown that
the projection-based approach for S3 conserves the objectivity of the discretized equations. In [13]
this approach is applied to a slightly different problem of the geometrically exact shell formulation,
where it is used to discretize the unit sphere S2. We apply this approach again to the geometrically
exact beam formulation because even though it was applied in [8] to the geometrically exact beam
formulation it is not covered in great detail.
Regardless of various publications [14, 15] which deal with quaternions in the geometrically exact
beam formulations it is usually not reformulated in terms of linear algebra. However, for an effi-
cient numerical implementation of the model, this is crucial. So we present the beam formulation
in terms of linear algebra and apply the projection-based discretization method to it.
In the literature, it is often shown that the Isogeometric Analysis (IGA) is advantageous over the
classical FEM with Lagrangian elements, especially for dynamic problems [16]. We thus apply
the IGA to the quaternion formulation of the geometrically exact beam. However, the proposed
model can be applied to Lagrangian shape functions in the same manner.
An outline of the rest of the paper is as follows. In Sec.2 we introduce the basic of quaternions
as well as unit quaternions and how they can be used to display rotations. Further, we discuss the
problem of the discretization of the manifold given by the unit quaternions. In Sec. 3 we give a
very short introduction to the geometrically exact beam formulation and apply the results obtained
above to the formulation. Numerical examples showing promising results follow in Sec. 4. At the
end, we give a short conclusion in Sec. 5.

2 Quaternions
The space of quaternions H can be seen as an extension of the space imaginary numbers C. Like
the imaginary numbers a quaternion q ∈ H consist of a scalar real part q0 ∈ R and an imaginary
part also called vector part. A quaternion is constructed with the help of the imaginary basis (i, j,k)
as

q = q0 +q1i+q2j+q3k = (q0,q) , (1)



where q1,q2,q3 ∈ R. From here on, we apply the notation with the brackets. Standard operations
like the addition, the scalar product, or the multiplication with a scalar can be applied to quater-
nions as with vectors in R4. However, a new algebra is introduced for the multiplication of two
quaternions. It can be written as

q◦p = (q0 p0 −q ·p,q0p+ p0q+q×p) = v ∈ H , (2)

where q · p = qi pi is the standard scalar product between two vectors. We apply the Einstein
notation for double indices in this work, where lower roman indices i, j,k run from 1 to 3, upper
roman indices I,J,K from 1 to 4 and Greek letter indices α,β as used in Sec. 3 take values 1
and 2. In contrast to the vectors from the Rn quaternions q,p ∈ H are closed under the product
q ◦p = v ∈ H. Due to the last term involving the cross product the quaternion product is not
commutative.
Similar to imaginary numbers the conjugate of a quaternion is defined by

q̄ = (q0,−q) . (3)

The norm of a quaternion is defined as for a vector of R4

∥q∥=√
q ·q =

√
q2

0 +q2
1 +q2

2 +q2
3 , (4)

and for each quaternion, an inverse can be constructed in the following way

q−1 =
1

∥q∥ q̄ . (5)

2.1 Unit quaternions
Quaternions of unit length are of special interest as they can be used to display rotation very
efficiently. The space of unit quaternions is called H1

H1 = {q ∈ H | ∥q∥= 1} . (6)

They form a parametrization of the unit sphere S3 in R4, which is defined by

S3 = {q ∈ H1} . (7)

Unit quaternions have a Lie group structure, with the quaternion multiplication ◦ as defined in Eq.
(2) as the group action. Taking the time derivative of the unit constraints

q̇ ·q+q · q̇ = 0 . (8)

and evaluating the equation at the groups’ identity ε = (1,0) reveals that admissible velocities that
lie in the tangent space are pure quaternions with a real part equal to zero

TεS3 = s3 = {v ∈ H0 | ,v = (0,v)} . (9)

This is also called the Lie algebra denoted by s3. It is isomorph to R3. The Lie algebra can be
mapped to the unit sphere S3 with the exponential map

exp((0,
1
2

v)) = cos(
1
2
∥v∥)(1,0)+ sin(1

2 ∥v∥)
∥v∥ (0,v) , (10)

which is very similar to the Euler formula for complex numbers (exp(iφ) = cos(φ)+ isin(φ)).
Every rotation in 3D can be defined by a rotation angle φ = ∥v∥ and an axis of rotation given by a



unit vector v/∥v∥ as stated by Euler’s theorem. A rotation of a vector v ∈ R3 with the help of the
quaternion algebra can be written as

(0,v′) = q◦ (0,v)◦ q̄ , (11)

where v′ is then the resulting rotated vector. The division by the factor 2 in Eq. (10) accounts for
the effect of the two quaternions in Eq. (11). Even though the rotation of an element v of R3 can
be written in terms of quaternion algebra. It is usually more convenient to apply the mapping from
the unit sphere S3 onto SO(3) via

R(q) = (q2
0 −q ·q)I+2q⊗q+2q0q̂ , (12)

and apply the resulting rotational tensor in a standard fashion v′ = R(q) · v. Note that the same
rotational tensor is given by the negative of a unit quaternion

R(q) = R(−q) , (13)

as can be seen from Eq. (12). Thus, there exists no explicit inverse mapping from SO(3) to S3 In
contrast to other parametrization with rotational vectors, such as Euler angles or the Rodrigues for-
mula, there are no trigonometric functions, which are computationally intensive when numerically
evaluated, involved in Eq. (12). Thus, a parametrization of the SO(3) with quaternions is very
efficient. Furthermore, there exist no singularities for a quaternion representation of the SO(3).

2.2 Representation of quaternions in linear algebra
For the numerical implementation, it becomes necessary to rewrite the quaternion product as de-
fined in Eq. (2) in terms of linear algebra operations. We use the notation as introduced in [17].
For this two mappings E(q),G(q) : H → R3×4 are introduce

E(q) =
[
−q q0I+ q̂

]
, G(q) =

[
−q q0I− q̂

]
. (14)

We further define an operator

−
v =

[
0 −v⊤

v −v̂

]
. (15)

mapping a vector v : R3 → R4×4. As before the hat denotes a skew-symmetric matrix of an ax-
ial vector v ∈ R3. As shown in [17] we can then rewrite an orthogonal tensor obtained from a
quaternion as

R(q) = E(q)G(q)⊤ . (16)

The time differential of Eq. (16) is thus found by applying the product rule

∂R(q)
∂ t

= Ṙ(q) = E(q̇)G(q)⊤+E(q)G(q̇)⊤ = 2E(q̇)G(q)⊤ = 2E(q)G(q̇)⊤ . (17)

where the differential after time is denoted with a dot. As we need it later to describe the beam’s
behavior in Sec. 3 we introduce a frame of three mutually orthogonal vectors of unit length di ∈ R

di = R · ei . (18)

We refer to the vectors di as directors. With the help of equation Eq. (17) when can write the
directors as

di = E(q)G(q)⊤ei = E(q)
−
e iq , (19)

where we use the last formulation in the rest of the work. Differentiating Eq. (19) we obtain

ḋi = Ṙ(q)ei = 2E(q)
−
e iq̇ . (20)



2.3 Discretization of quaterions
As mentioned in Sec. 1 the discretization of a complex manifold, such as the S3, has to be handled
with great care. A standard discretization in a finite element sense with an additive structure does
not preserve the manifold’s structure at every point of the discretized domain. When using a dis-
cretization, which fulfills the collocation properties on the nodes such as the standard Lagrangian
shape functions, it can be assured that the nodal points are on the manifold as constraints can be
enforced in a strong sense. However, this does not ensure the geometric structure is conserved
over the whole domain of a finite element and is not possible for an isogeometric approach of
higher order, where the constraints are enforced in a weak sense. Nevertheless, for both types of
shape functions the structure of the manifold is violated at integration points. Nevertheless, such
an approach can be chosen, however, the convergence behavior will not be optimal [4, 12, 5]. We
cannot display the S3 ∈ R4 directly, however, a sketch illustrating a direct discretization approach
is shown in Fig. 1a. The gray vectors q1(s1) and q1(s1) display the nodal values. The dotted red
line indicates the discretized variable between two nodal points at s1 and s2 with the blue vector
giving the discretized quaternion qh at position s.
Another approach conserving the structure of a Riemann manifold, such as the S3 or SO(3), for a
finite element discretization are the so-called GFEs as proposed by Sander [4]. Instead of choos-
ing a classical approach, the elements are constructed using the geodesic, the shortest path, on the
manifold. In [12] it is generalized to higher order discretization. This approach ensures the con-
servation of the geometry in every point exactly, as sketched in Fig. 1b. The optimal convergence
behavior was shown analytically [5] as well as numerically [4, 12]. The approach by Crisfield
[6] as well as the well-known spherical linear interpolation (SLERP) algorithm known from com-
puter graphics [11] fall into this category. However, this approach needs to evaluate trigonometric
functions at every Newton step making them costly to compute. Furthermore, it does not have an
additive structure as a classical FEM approach increasing the effort for the implementation. This
makes it also more devious to implement higher orders, as for the computation of higher order
derivatives the product rule has to be applied multiple times. A sketch of the discretization is
shown in Fig. 1b. The discretized line, indicated with the red dotted line, lies here always on the
geometry of the manifold.
This is only a very short overview of discretization approaches and by no means comprehensive.
However, as mentioned by Sander [4, 12] and Grohs [5, 10] the topic of finite elements conserving
the structure of a manifold did so far receive not very much attention in the literature.

S3

q1(s1)

q2(s2)

q(s)

(a) Classical FEM approach

S3

q1(s1)

q2(s2)

q(s)

(b) Geodesic finite element

S3

p1(s1)

p2(s2)

q(s)

(c) Projection-based element

Figure 1: Sketch of different discretization approaches

2.3.1 Projection-based approach
We propose a different approach, which we think is more convenient as it resamples the classical
discretization approach of finite elements. It can be applied to Lagrangian elements as well as to



the isogeometric analysis. We discretize the control point (or nodal) values in a classical finite
element sense

ph(s) =
n

∑
i=1

Ni,s(s)pi , (21)

pi ∈ R4 are control point (or nodal) values associated with the quaternions. As mentioned above
this does not conserve the geometric structure of the manifold. We, therefore, project the dis-
cretized variable onto the manifold by dividing through the norm and taking the projected quantity
as the physical variable. The discretized quaternion variable thus follows as

qh(s) =
∑

n
i=1 Ni(s)pi

∥∑
n
i=1 Ni(s)pi∥

= P(ph(s)) , (22)

where we introduced the projector P(•). The projected quantity qh(s) is the variable, which we use
for the computation of the special orthogonal tensor as shown in Eq. (17). In this way, we ensure
that q(s) is a unit quaternion at every point s and in that way always a parametrization of a tensor
R ∈ SO(3). The derivative with respect to the parameter s denoted by (•),s follows from applying
the chain rule

qh
,s(s) =

I4 −qh(s)⊗qh(s)
∥∑

n
i=1 Ni(s)pi∥

n

∑
i=1

Ni,s(s)pi = P′(ph(s))
n

∑
i=1

Ni,s(s)pi = P′(ph)(s)ph
,s(s) , (23)

where we introduced the derivative of the projector with respect to the nodal (or control point)
values

P′(ph(s)) = ∇phP(ph(s)) =
I4 −qh(s)⊗qh(s)
∥∑

n
i=1 Ni(s)pi∥

. (24)

The prime (•)′ thus denotes the derivative with respect to the discretized quantity ph(s). We made
use of the following connection

qh ⊗qh =
1

∥∑
n
i=1 Nipi∥

(
n

∑
i=1

Nipi ⊗
n

∑
i=1

Nipi

)
. (25)

Further, we introduce the variation of the discretized quaternion quantity

δqh(s) = P′(ph(s))
n

∑
i=1

Ni(s)δpi = P′(ph(s))δph(s) , (26)

where we introduced the following discretization ∑
n
i=1 Ni(s)δpi = δph(s). Its derivative δq,s follows

from the chain rule

δqh
,s(s) =

(
P′(ph(s))δph(s)

)
,s
= P′′(ph(s))ph

,s(s)δph(s)+P′(ph(s))δph
,s(s) , (27)

where P′′(ph) is the second derivative of the projector with respect to the discretized control point
(or nodal) values

P′′(ph) = ∇phP′(ph)

=
1

∥ph∥2

(
3qh ⊗qh ⊗qh −δIJ eI ⊗ eJ ⊗qh −δIK eI ⊗qh ⊗ eK −δJK qh ⊗ eJ ⊗ eK

)
.

(28)

We here introduce a four-dimensional orthonormal bases denoted by eI and use the dyadic product
on elements with four dimensions.
The above approach was already applied by Romero [8] to the geometrically exact beam. However,
as [8] is a very short contribution we feel that we can still contribute by going into greater detail.
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Figure 2: Sketch of the geoemtrically exact beam

3 The geometrically exact beam using quaternions
A slender structure, which is extended much longer in one dimension than in the other two, can
be modeled using a beam model. The configuration of the geometrically exact beam model is
described by the position of its centerline ϕ(s, t) and the orientation of its cross-section plane
spanned by the vectors dα(s, t). The coordinate s ∈ [0,1] is the parametrization of the centerline
and t is the time. Thus, every point on the beam can be described by

x(s, t) = ϕ(s, t)+θ(s, t) = ϕ(s, t)+θ αdα(s, t) , (29)

with θα the convective coordinates. Note that we use the Einstein notation for double indices.
Together with a third director d3

d3(s, t) = d1(s, t)×d2(s, t) , (30)

the directors di form an orthonormal frame. The directors are of unit length and mutually orthog-
onal

di(s, t) ·d j(s, t) = δi j . (31)

We thus can write the configuration Q of the geometrically exact beam as

Qdi
= {(ϕ,di) : [0,L]× [0,T ]→ R3 ×R3×3 |di ·d j = δi j} . (32)

However, compared with the formulation in directors the number of unknowns reduce drastically.

3.1 Kinematics of the geometrically exact beam with quaternions
Another way to express the directors is to use a special orthogonal tensor R(s, t) and expressed the
directors as a rotation of the orthonormal basis ei

di(s, t) = R(s, t) · ei . (33)

Here it becomes necessary to parametrize R(s, t) in some sense. Instead of a rotation vector,
which leads to singularities, we chose a parametrization via unit quaternions. With the help of unit
quaternions, we can express the beams configurations as

Qq = {(ϕ,q) : [0,L]× [0,T ]→ R3 ×H1} . (34)

Eq. (29) can then be rewritten by using Eq. (19)

x(s, t) = ϕ(s, t)+θ αE(q(s, t))
−
eαq(s, t) . (35)

However, in the numerical implementation, the unit quaternions have to be represented by unit
vectors p ∈ R4, which leads to additional unit constraints for p. This results in the following
configuration

Qq = {(ϕ,p) : [0,L]× [0,T ]→ R3 ×R4 |p ·p = 1} . (36)



3.2 Strain measures with quaternions
Two strain measures define the kinematic of the beam Γ = Γiei, accounting for shear and longitu-
dinal strain, and K = Kiei due to bending and torsion. They are well-known in the literature so we
do not derive them here. However, we first show them for the director approach. With the help of
the previous section, they can be rewritten in terms of quaternions

Γi = di ·ϕ ,s −δi3 =
(

E(q)
−
e iq
)
·ϕ ,s −δi3 , (37)

Ki =
1
2

εi jk (dk ·d j,s −dk ·d j,s|t=0)

= εi jk

[(
E(q)

−
ekq
)
·
(

E(q)
−
e jq,s

)
−
(

E(q)
−
ekq
)
·
(

E(q)
−
e jq,s

)
|t=0

]
.

(38)

The variation of the strain measures follows in the same fashion

δΓi = δϕ ,s ·di +δdi ·ϕ ,s = δϕ ,s ·
(

E(q)
−
e iq
)
+2

(
E(q)

−
e iδq

)
·ϕ ,s , (39)

δKi =
1
2

εi jk [δdk ·d j,s +dk ·δd j,s]

= εi jk

[(
E(q)

−
ekδq

)(
E(q)

−
e jq,s

)
+
(

E(q)
−
ekq
)
·
(

E(q,s)
−
e jδq+E(q)

−
e jδq,s

)]
.

(40)

3.2.1 Discretized strain measures with quaternions
Using the normalized discretization of the quaternions as introduced by Eq. (22) and Eq. (23) the
strain measures are given by

Γi =
(

E(qh)
−
e iq

h
)⊤

ϕh
,s −δi3 , (41)

Ki = εi jk

[(
E(qh)

−
ekq

h
)⊤(

E
(

qh
)−

e jq
h
,s

)
−
(

E(qh)
−
ekq

h
)⊤(

E
(

qh
)−

e jq
h
,s

)∣∣∣
t=0

]
, (42)

and the variation of the strain measures as

δΓi =
(
δϕh

,s

)⊤(
E(qh)

−
e iq

h
)
+2
(
δph
)⊤(

E(qh)
−
e iP′(ph)

)⊤
ϕh
,s , (43)

δKi =
(
δph
)⊤

εi jk

[(
E(qh)

−
ekP′(ph)

)⊤(
E(qh)

−
e jq

h
,s

)
+
(

E(qh
,s)

−
e j +E(qh)

−
e jP′′(ph)ph

,s

)⊤(
E(qh)

−
ekq

h
)]

+
(
δph

,s

)⊤
εi jk

(
E(qh)

−
e jP′(ph)

)⊤(
E(qh)

−
ekq

h
)
.

(44)

Once we computed the strains and their variations, we can again write the variation of the internal
strains as

δGint =
∫ L

0
δΓ ·D1 ·Γ+δK ·D2 ·K ds , (45)

with the tensors D1 and D2 containing the stiffness parameters computed from geometry and ma-
terial properties as defined in [7].

3.3 Unit constraints
To ensure the nodal (or control point) values pi do converge towards the unit sphere S3 (see Sec.
3.1), we apply additional constraint

Φin = ph ·ph −1 = 0 (46)



In the classical FEM using Lagrange shape functions constraints are often enforced in a strong
sense on the nodes. In the framework of the IGA, the constraints have to be enforced in a weak
sense by integrating over the domain∫ L

0
λ hGin ·δph +δλ h

Φin ds , (47)

with the constraint gradient Gin = ∇pΦin. We apply the same discretization as for the other quan-
tities to the Lagrange multipliers.

4 Numerical validation
In this benchmark example a cantilever beam is loaded with a torque M=

[
0 0 −2π EI

L

]
ei at the

free end. A sketch of the problem is shown in Fig. 3a. For M3 =−2π EI
L the beam forms an exact

circle. The convergence results for the displacement of the tip of the beam ϕ(s = 1) for different
element orders are shown in Fig. 3b. The solid lines are the results of the proposed approach with
the projection-based element formulation. The dashed-lines show the optimal behavior.

e1

e2

e3 L
M

(a) Sketch of a cantilever beam with an end
torque

101 10210−6
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∥ ϕ
(s
=

1)
∥

p = 1
p = 2
O(h2)

O(h3)

(b) Sketch of a cantilever beam with an end torque

5 Summary & Conclusion
The configuration manifold of the geometrically exact beam, given by R×SO(3), has a complex
structure. When solving the partial differential equations associated with the beam model with the
FEM, great care has to be taken to obtain a path-independent and objective formulation. Opti-
mal convergence behavior of the FEM solution can only be achieved if the manifolds structure is
conserved. Therefore, we propose a projection-based element for a unit quaternion parametriza-
tion of SO(3), which conserves the structure of the unit sphere S3. For this purpose we introduce
quaternions in a general context and show how they can parametrize a rotational tensor with linear
algebra operations. We give the beams equation in terms of quaternions with this notation and we
show the optimal convergence behavior for the formulation for the example of a cantilever beam
roll-up.
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