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ABSTRACT
The development and optimisation of compliant (or flexure-based) manipulators with
redundant actuation have been considered before, showing that the redundancy can
be exploited to increase the support stiffness and reduce actuator loads. However, so
far only 2-DOF manipulators have been considered which enable translational mo-
tion in two directions. In this paper a third degree of freedom, the in-plane rotation
of the end effector, is added. The goal is to design and evaluate a first prototype ca-
pable of full planar motion. The dynamic performance of the manipulator is analysed
with a flexible multibody model. The links are assumed to be rigid. The SPACAR

software is used as its flexible beam element can describe the non-linear behaviour
of the flexure joints well at rather large deflections and accounts for constraint warp-
ing. In this prototype the end effector range of motion is limited such that the joint
rotations do not exceed ±30◦. Butterfly and cartwheel flexure joints can handle the
specifications without violating stress constraints. In the final design the lowest natu-
ral frequencies are 3.6 Hz for both translations and 7.9 Hz for the rotation. The first
parasitic frequency is expected at 76 Hz, which is sufficiently high. This prototype
has been manufactured with 3D printing. The lowest translational frequencies appear
to be somewhat higher than expected, which could arise from stiffness added by the
flexible coupling between actuator and upper arm. A higher resonance frequency is
found near 80 Hz, which agrees well with the expected first relevant parasitic mode.

Keywords: Flexure-based mechanisms, Redundantly actuated parallel kinematic ma-
nipulator (PKM), Non-linear beam elements, Experimental system identification.

1 INTRODUCTION
In [1, 2] compliant and redundantly actuated 2-DOF 3RRR parallel kinematic manipulators (PKM)
have been introduced and optimised as “best of both worlds” for precision applications. Being
compliant mechanisms, or more precisely flexure-based mechanisms, deterministic behaviour can
be realised because of the low level of friction, hysteresis and backlash [3, 4]. Being also a re-
dundantly actuated PKM, it combines the advantages of PKM, i.e. higher stiffness, low inertia
and large accelerations, with an improved handling of singularities and optimised actuator loading
made possible by the redundancy [5, 6, 7, 8].

Simulations and experimental tests indeed demonstrated advantages of combining both concepts [1].
However a drawback of the developed 2-DOF prototype is the limitation to only translational mo-
tion. Hence, in this paper a third degree of freedom is added which is the in-plane rotation of the
end effector. The design considerations, methodology and results will be presented for the first
prototype capable of full planar motion shown in Fig. 1(a) and detailed in the following sections.

2 CONCEPTUAL DESIGN
This first prototype of the planar 3-DOF 4RRR PKM with compliant joints is mainly realised to
understand the relevant steps in the dynamic modelling, design optimisation and control. Hence, it
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(a) CAD drawing [9]. (b) Manipulator schematic top view.

Figure 1. Design of the planar 3-DOF 4RRR PKM with compliant joints.

is not needed to aim for a highly optimised performance. Instead the design freedom is limited such
that the optimisation gives results and insight in a reasonable time. The main design considerations
are given in this section to define the system to be analysed in the next sections.

2.1 Arm lengths and system dimensions
The four arms of the 4RRR PKM are assumed to be similar and the actuators are located at the
corners of a square. Fig. 1(b) shows a simplified kinematic model in which the shoulder, elbow
and wrist joints are assumed to be ideal revolute joints. Characteristic dimensions are lengths L1
and L2 of upper and lower arm, respectively, as well as length L3 that represents the dimension of
the rigid square end effector (EE). All lengths can be chosen independently, where in particular
the total length L1 +L2 of a fully stretched arm can be split arbitrarily into both contributions L1
and L2. In the previous studies [1, 2] no advantage was found for different lengths of upper and
lower arm and hence these lengths are taken equal, i.e. L1 = L2.

Length L3 defines the dimension of the end effector. Having a large end effector is favourable
from a kinematic view as it allows better control of the EE rotation which follows directly from
the differences between the positions of the wrist joints divided by L3. However, a large L3 results
in a bulky and heavy end effector which negatively affects the dynamic performance. Hence, L3 is
chosen not too large, but sufficiently large to avoid collisions of the flexures of the wrist joints.

The overall dimensions of the system follow from the distance R between the actuator locations
and the centre of the end effector in the presented neutral configuration. Similar to the previous
designs R = 230.5 mm [1, 2].

2.2 Flexure joint types
For this first prototype the effective workspace of the manipulator has been limited to avoid ro-
tations larger than ±30◦ in all flexure joints. From the simplified model in Fig. 1(b) it can be
understood quite straightforwardly that a rotation of the end effector results in about the same
rotation of the wrist joints. To allow combined rotation and translation of the end effector, its rota-
tion is limited to ±15◦. Butterfly flexure joints [10], see Fig. 2(b), can handle large rotations up to
±30◦ without a significant loss of support stiffness and are therefore used for the elbow and wrist
joints. To enable these joint rotations, the angle between the leaf springs is chosen accordingly as
shown in the figure.

For the specified EE motion it is expected that the shoulder only has to rotate about ±15◦. In
this smaller range a cartwheel flexure joint, see Fig. 2(a), can offer higher, or at least comparable,
support stiffness compared to the butterfly flexure joint. Hence cartwheel flexure joints are used
for the shoulder joints because of their lower complexity.



(a) Cartwheel flexure. (b) Butterfly flexure.

Figure 2. Flexure joint types with two design parameters: The angle θ between the leaf
springs and the length L of one leaf spring [9].

2.3 Actuators and sensors
The manipulator is driven by rotational actuators that are mounted at the shoulders. The actu-
ators are direct drive Maxon EC 90 flat brushless motors (part number 323772, nominal torque
0.444 Nm), equipped with a co-located MILE encoder (part number 411966, 6400 pulses/revolu-
tion, so 25600 counts/revolution when used as a quadrature encoder). The motor axle is connected
to the upper arm with a flexible coupling (SICK KUP-1010-B), which allows for a maximum
misalignment of 0.3 mm.

2.4 Manufacturing and material
The links and joints are manufactured with 3D printing. For the arms relatively low-cost Fused
Deposition Modeling (FDM) of PLA is adequate. The joints are produced with Selective Laser
Sintering (SLS) of Nylon (PA2200) that can meet stricter geometric tolerances. The relevant
material properties are listed in Table 1.

Table 1. Material properties.
Material Property Value Unit
PolyLactic Acid (PLA) [11] Tensile strength 59 MPa

Young’s modulus 3.5 GPa
Density 1252 kg/m3

Nylon PA2200 [12] Tensile strength 45 MPa
Young’s modulus 1.7 GPa
Density 930 kg/m3

3 NUMERICAL MODEL
To analyse and optimise the manipulator design, two types of models have been used as will be
detailed in this section. First a low order model is considered that only accounts for the intended
motion in the three degrees of freedom of the end effector. Next a more complicated flexible
multibody model is needed to analyse e.g. the finite support stiffness.



3.1 3-DOF dynamic model
A low order 3-DOF model is derived first. It should capture the main low frequent dynamic be-
haviour, i.e. to evaluate the three lowest natural frequencies and the required actuator torques. This
simplified model follows from Fig. 1(b) where the ideal revolute joints are assumed with a con-
stant compliance for the in-plane rotation and infinite stiffness in all other directions. With these
assumptions, the velocities of the links and the relative rotations of the joints can be expressed in
the position, rotation and (angular) velocities of the end effector. Knowing these kinematic rela-
tions, the (link) masses and the (joint) rotational stiffnesses, the low order model can be obtained
relatively straightforwardly e.g. using the Euler-Lagrange equation. The result can be expressed
in the usual way as

M̄(q)q̈+C(q, q̇)q̇+Q(q) = AT (q)τττ, (1)

where q are the three independent coordinates for which it is convenient to take the EE Cartesian
coordinates xee, yee and its rotation θee. Matrix M̄ is the configuration dependent (reduced) mass
matrix; C accounts for the Coriolis terms; Q represents the (non-linear) stiffness contributions
and the transpose of the Jacobian matrix A transforms the vector τττ with four actuator torques τi

(i = 1..4) into effective forces fx,ee, fy,ee and torque τee on the end effector.

3.2 Redundant actuation
The non-square Jacobian matrix A in Eq. (1) reflects the redundant actuation which means that
there is not a unique solution for the actuator torques τi (i = 1..4) for a specified effective end
effector force and torque  fx,ee

fy,ee

τee

= AT (q)


τ1
τ2
τ3
τ4

 . (2)

All possible solutions for the actuator torques can be written as
τ1
τ2
τ3
τ4

=
(
AT (q)

)†

 fx,ee

fy,ee

τee

+λ null(AT ), (3)

where (AT (q))† is the Moore–Penrose pseudo-inverse of AT , null(AT ) refers to the null space of
the matrix, which is a vector, and scalar λ can be chosen arbitrarily. Several optimal solutions can
be considered. The 2-norm minimises the length of vector τττ . This solution is found straightfor-
wardly taking λ = 0 in Eq. (3).

Alternatively, the ∞-norm minimises the maximum absolute value of the four actuator torques,
which may be more beneficial to avoid actuator saturation in case of limited maximum actuator
torque. This solution can be found graphically from Fig. 3. This figure gives an example of how
the absolute values of the actuator torques can vary as functions of λ . According to Eq. (3) linear
relations are found where the respective slopes of the lines follow from the null space. Following
the algorithm proposed by Woo et al. [13] the optimum according to the ∞-norm is found as the
lowest intersection of the lines with the largest torques, i.e. the solid dot where (in this example)
|τ2|= |τ4|. Note that this solution is close to the 2-norm optimal solution with λ = 0.

3.3 Redundant sensing
Fig. 4 clarifies the redundant sensing of the manipulator. The co-located encoders measure the
four shoulder angles φ1,4,7,10 from which the three EE coordinates q = [xee,yee,θee]

T should be
computed. The excess of one sensor indicates the redundancy as four equations can be derived for
the three EE coordinates as follows.



Figure 3. Examples of the absolute torques that are solutions of Eq. (3) for an arbitrary
Jacobian matrix AT .

The positions of the elbow joints (x2,5,8,11,y2,5,8,11) follow directly from the (fixed) shoulder posi-
tions, the shoulder angles φ1,4,7,10 and upper arm lengths L1. Similarly, the positions of the wrist
joints (x3,6,9,12,y3,6,9,12) can be expressed in the (unknown) EE coordinates q and the EE dimension
L3. Then four constraint equations have to be satisfied for the lower arms

S(q) =


(x3(q)− x2(φ1))

2 +(y3(q)− y2(φ1))
2 −L2

2
(x6(q)− x5(φ4))

2 +(y6(q)− y5(φ4))
2 −L2

2
(x9(q)− x8(φ7))

2 +(y9(q)− y8(φ7))
2 −L2

2
(x12(q)− x11(φ10))

2 +(y12(q)− y11(φ10))
2 −L2

2

= 0. (4)

In general no solution exists for q that exactly solves all four equations, but instead a minimal least
squares solution can be obtained for these non-linear functions of q. For a numerical solution the
iterative Newton–Raphson method is well-suited. Knowing an estimate q(i) for this solution, the
next estimate q(i+1) is computed with

q(i+1) = q(i)−
(

S,q(q(i))
)†

S(q(i)), (5)

where (S,q(q(i)))† is the pseudo-inverse of the Jacobian of the constraint equations. The iterations
can be continued until some preset accuracy is met. During real-time control, a finite amount

Figure 4. Schematic view of the manipulator including coordinates.



of time is available to perform calculations and then only a limited number of Newton-Raphson
iterations can be executed. With sufficiently small time steps, the changes in all positions are quite
small and typically a single iteration suffices.

3.4 Flexible multibody model and design optimisation
For design optimisation higher natural frequencies associated with unwanted parasitic vibrations
must be known as well. Such higher order dynamic behaviour is investigated with a more advanced
flexible multibody model in which all flexures are modelled in the SPACAR software package with
non-linear beam elements that account for constraint warping [14].

Although this model can evaluate the natural frequencies throughout the manipulator workspace
quite efficiently, a system level optimisation with many (geometric) parameters would still be
quite involved. Instead, the design is optimised in parts. At first the length L and angle θ of the
cartwheel flexure, see Fig. 2(a), are optimised for a high compliance of the in-plane rotation and a
high parasitic natural frequency. Next the geometry of the butterfly hinges is determined. Finally,
the arm lengths are chosen to obtain acceptable rotations for the shoulder joint.

4 NUMERICAL RESULTS
The dynamic properties of the complete manipulator are analysed with the advanced flexible multi-
body model. Fig. 5 shows the relevant natural frequencies and mode shapes in the neutral con-
figuration. The natural frequencies of both in-plane translational modes are identical because of
the symmetry and are low (3.6 Hz) which confirms the desired high compliance. The natural fre-
quency of the in-plane rotational mode is acceptable as well (7.9 Hz). Next eight modes with a
natural frequency of about 53 Hz represent internal modes in the butterfly flexures. For the pro-

Modes 1,2 (3.6 Hz): Mode 3 (7.9 Hz):
In plane translations. In plane rotation.

Modes 4–11 (53 Hz): Mode 12 (76 Hz):
Internal mode. Out-of-plane vibration.

Figure 5. Natural frequencies and mode shapes of the 3-DOF 4RRR PKM with compliant
joints. The “free” ends of the cartwheel flexures are in fact connected to the mounts (not
shown).



Figure 6. Natural frequencies of the system during EE rotation with (xee,yee) = (0,0).

totype manipulator these modes are ignored. The next mode 12 is an out-of-plane vibration of
the end effector and is expected to be the performance limiting first parasitic mode. Its natural
frequency of 76 Hz is about an order larger than the three lowest natural frequencies, which is an
acceptable result.

These natural frequencies and mode shape are found in the neutral position of the end effector, but
will vary when it moves or rotates. Fig. 6 shows the variation of the lowest three natural frequency
when the end effector rotates in the neutral position (xee,yee) = (0,0). The first and second natural
frequencies is are identical and show an asymmetric behaviour that is quite different for negative
and positive EE rotation: It drops from 3.6 Hz to 3.1 Hz for θee = +15◦, and increases to 4.5 Hz
for θee =−15◦. The third natural frequency shows a similar behaviour and varies between 6.1 Hz
and 12.2 Hz. This variation is mainly caused by the change in mass matrix. Since the third natural
frequency represents the rotation of the EE, this change in mass matrix means a change in inertia,
which is obvious as the positions of the arms differ significantly comparing the configurations of
EE rotations of −15◦ and +15◦.

Similarly the natural frequencies can also be investigated for linear displacements of the end ef-
fector. Fig. 7 presents the variation of the first natural frequency for fixed EE rotations of −15◦

and +15◦. The black curve in these figures indicates the border of the workspace that follows

(a) EE rotation of −15◦ (b) EE rotation of +15◦

Figure 7. First natural frequency of the system with EE rotations of −15◦ and +15◦.



from the joint rotation limits. It appears that the natural frequencies depend only weakly on the
position. Similar results are found for the second and third natural frequency. Note that for such
displacements where the end effector is not in the neutral position, the symmetry of the system is
broken such that the first and second natural frequencies are no longer equal.

5 EXPERIMENTAL RESULTS
Fig. 8 shows the diagonal parts of the experimentally identified Bode magnitude plot of the system
in the neutral configuration. It is obtained by exciting the system with multi-sine signals in the
frequency range from 1 Hz to 100 Hz. The lowest translational frequencies appear to be about
5 Hz which is somewhat higher than expected. This could be caused by the stiffness of the flexible
coupling between actuator and upper arm which results in a higher stiffness compared to the model.

The internal mode of the butterfly flexures is not visible in the responses which justifies that these
modes may be ignored during the design optimisation. The resonance frequency near 80 Hz agrees
well with the expected frequency of the first relevant parasitic mode.
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Figure 8. Diagonal parts of the experimental Bode magnitude plot of the system in the neutral
configuration.

Unfortunately it appeared that the end effector could not move throughout the workspace as
planned due to an obstruction of some parts. Nevertheless, the varying dynamic behaviour has
been examined for a range end effector positions and rotations that can be realised.

Fig. 9(a) shows the Bode diagrams for the relation between xee and fx,ee with varying end effector
rotations between −5◦ and 0◦. It can be seen that the first natural frequency as well as the equiva-
lent stiffness decrease when the end effector rotates in negative direction. This is presented in more
detail in Fig. 10 which also includes the behaviour for rotations in the positive direction. Different
from the expected behaviour, Fig. 6, the natural frequencies decrease for rotations in both positive
and negative directions.

(a) xee/ fx,ee for negative EE rotation (b) yee/ fy,ee for EE linear displacement

Figure 9. Bode diagrams outside the neutral configuration.



(a) First and second natural frequency (b) Equivalent stiffness

Figure 10. Dynamic properties as functions of the end effector rotation in the neutral position.

Fig. 10 also presents the relation between yee and fy,ee. For this relation no data is shown for an
EE rotation of −5◦, 3◦, 4◦ and 5◦ as for these rotations no natural frequency or phase shift could
be recognised in the Bode plot.

This behaviour can also be found when the end effector is moved away from its neutral position
without rotation. Fig. 9(b) presents the Bode diagram of the relation between yee and fy,ee for
varying EE position and no rotation. It can be seen that the resonance peak and phase shift are
lacking for most of the displacements.

The absence of the natural frequency and phase shift indicates a negative stiffness. A likely cause
for this unexpected behaviour is cogging. When rotating the direct drive actuator manually it
can be noticed that the rotation of the motor axle tends to stick to preferred angles. In between a
negative stiffness is likely to occur from the motor rotation which is parallel to the positive stiffness
of the manipulator and in this way results in a varying combined stiffness. A detailed analysis of
this behaviour is left for future research.

6 CONCLUSIONS
This paper presents a first design of a planar 3-DOF 4RRR parallel manipulator with redundant
actuation and compliant joints. This first prototype shows dynamic behaviour in the neutral config-
uration in agreement with numerical expectations. It confirms that so far the design methodology
and modelling are applicable and can be used to further optimise the system. However, some
unexpected behaviour has been observed for end effector positions and rotations different from
the neutral configuration. Cogging of the direct drive actuators may contribute significantly to the
total stiffness of the system and should be investigated in more detail in future research.
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