ECCOMAS Thematic Conference on Multibody Dynamics
July 24 - 28, 2023, Lisbon, Portugal

Non-Smooth Dynamics Formulation for Planar Prismatic Joints with
Clearances

Ekansh Chaturvedi!, Corina Sandu?, Adrian Sandu’

I PhD. Student, 2 Professor,
Mechanical Engineering Dept.  Mechanical Engineering Dept.
Virginia Tech Virginia Tech
Blacksburg, 24060, USA Blacksburg, 24060, USA

ekanshchat96 @vt.edu csandu@vt.edu

3 Professor,
Computer Science Dept.
Virginia Tech
Blacksburg, 24060, USA
sandu@cs.vt.edu

ABSTRACT

Multibody systems can be classified into two categories based on the type of con-
straints they carry. Ideal constraints in the multibody systems are the ones which
enforce absolute alignment of bodies with respect to each other in the desired di-
rection of motion. However, the real-life systems have bodies constrained to each
other in joints which have clearances, and the condition of absolute alignment is not
followed. The existing multibody formulations deal with such cases by introducing
impulse generating contact detection models based on interpenetration of the bodies,
which estimate the contact forces using material properties of the bodies in contact us-
ing nonlinear spring-damper elements. The high numerical values of Hertzian contact
stiffness result in stiff differential equations. Another approach for solving contact
problems is non-smooth method that employs equations of motion as mathematical
constraints and minimize the action as per the "least action principle". This work de-
lineates a methodology for formulating and simulating non-smooth planar multibody
systems. The methodology is demonstrated through a case study on planar prismatic
joints with clearances. The overall formulation of the problem has been discussed
with emphasis on formulation of geometric constraints that capture all the possible
cases of contact formation. Cases are simulated and observations are discussed.

Keywords: Non-smooth dynamics, Prismatic joints, Planar systems, Joint clearances,
Contact detection.

1 INTRODUCTION

Multibody systems simulations may consist of multiple constraints that represent mechanical joints
in the form of equations. Such constraints enforce absolute alignment of the connected bodies in
the desired direction of relative motion. Hence, such constraint equations represent ideal joints.
However, real world mechanical systems have joints with clearances and the condition of absolute
alignment is not valid and the motion is governed by intermittent formation of multiple contacts.
In this section, the existing literature relevant to contact mechanics and constrained multibody
dynamics has been studied. Corral et al. [1] introduced a geometry-based contact model that
considers penetration for evaluating displacement and restitution. One interesting feature of this
model is that it formulates infinite planes to identify the contact points, however, this model does
not integrate well with DAE/ODE formulations for constrained multibody systems.

Dopico et al. [2, 3] and Choi et al. [4] used a similar approach for formulating contact mod-
els integrable with index-3 DAEs. However, the approach uses discretized mesh representation



of geometry to identify the contact points and hence the constraint manifold is overloaded with
equations corresponding to each node. These methods account for dynamics by forcing penalty
factors using augmented Lagrangian method by projection of velocity and acceleration at contact
points to solve for static equilibrium.

Using the Hertzian contact model developed by Nikravesh and Lankarani [5], Shen et al. [6]
developed formulation for simulating impact dynamics by using dynamic optimization with energy
loss being the objective function. It must be mentioned at this point that the contact model in
[5] has been the one of the most impactful models and has been implemented in the renowned
commercial software packages. However, a major concern that arises with using nonlinear spring-
damping combination of contact forces with Hertzian method, is that doing so makes the equations
of motion very stiff and it requires very small time-step sizes for integration. Further, this also
requires separate detection of individual contact and subsequent evaluation of contact forces. This
method makes this approach computationally inefficient, especially when multiple contacts occur
intermittently.

Until now, various contact models and their applications have been discussed in this section. How-
ever, the work most relevant to the scope of this project can be credited to Sharf and Zhang [7]
and [8]. Sharf and Zhang in [7] founded the geometry based contact models. Zakhariev in [8]
described an approach for calculating the reaction and friction forces between pairs of bodies
in spatial mechanical systems, as well as contact points in joints with clearances. Matrix meth-
ods were used to derive the nonlinear kinematic constraint equations, and the external and inertia
forces for each configuration of the kinematic chain the contact points and corresponding normal
forces are calculated. However, a major drawback that could be observed in [8] is that the equality
constraints discussed do not account for all the possible orientations of the contact formation.

Further developments in the domain of clearance joints include the work by Ibrahimi et al [9],
Flores and Lankarani [10] and Xiang et al. [11], where they conducted simulations on planar
systems formulated as DAEs and contact model referenced from [5]. Sensitivity analysis for planar
systems was also included in [9] although the sensitivities were not analyzed in the time domain.
Bauchau et al. [12] used unilateral contact conditions to simulate planar and spatial joints by
adding additional rotational state variables and using non holonomic inequality constraints with
introduction of slack variables.

The recent developments in non-smooth dynamics have demonstrated the efficacy of the method-
ology through many-body dynamics problems such as simulation of sand particles, stacking of
bricks and stacking of multiple balls in a box [13, 14, 15], where the formulation of constraints is
straight forward. When implementing this approach to multibody systems, a crucial aspect would
be the formulation of constraints. Because of shape and geometry of the components, the con-
straint formulation should capture the possibilities of multiple contact points at different locations
yet retaining the analytical nature of the constraint expression. This requirement would be neces-
sary to build computationally efficient codes in contrast to contact detection algorithms that use
finite element discretization schemes of the solid bodies.

The discussed literature inspires one to work towards a universal formulation for multibody sys-
tems that can simulate systems with ideal constraints, constraints with clearances as well as im-
pact dynamics. The results can be impactful in rationalizing the design procedures as tolerance
assignment is a critical task on engineering drawings. Understanding the effect of tolerances on
the system’s dynamic response can be helpful in optimizing the design of a machine’s components.



2 METHODOLOGY
2.1 Formulation of problem

Consider a system of N bodies, of mass m; and inertia J; with generalized coordinates designated
by q; = T s Oj]T € R? as a planar system, such that j € IV, where the j particle has mass m i
and inertia J;. Haug [16] derived the equations of motion for unconstrained systems by leveraging
D’ Alembert’s principle of virtual work:

oqM(q)§+8S(q,q) —Qa) =0 (1)

Here, M(q) is the 3N x 3N combined mass matrix of N bodies. The 3N x 1 vector S(q,q)
represents the Coriolis force and the 3N x 1 vector Q4 represents external forces and torque acting
on the body neglecting friction. Unless the contact happens, the bodies move as an unconstrained
system in the free space, following the equation (2):

e = —M(q) "' (S(q,4) — Qa) )

Let the gap function ®"¢ be such that "¢ < 0. If the contact is formed, the work done by
constraint reaction forces corresponding to inequality constraints, is 0. Therefore, 6q(Pq“/(q)) =
0, where ®¢“/(q) is the Jacobian matrix of the gap function. Using the Lagrangian multipliers

[17, 18], the equation of motion transforms to equation (3).
.. ineq” .
M(q)q+P¢* (q)u+S(q,q) —Qa=0 3)

Where u is the vector of Lagrange multipliers for each constraint equation. The entity ®"¢?(q)* u
represents the element wise product of expressions in the constraint manifold, and the correspond-
ing Lagrange multiplier y. Therefore:

Dyl (q) = 0; >0 )

This equation indicates a complementary condition which basically means if ®"¢(q) = 0, u # 0
and if u = 0, ®™4(q) # 0 . The physical meaning of this equation is that if the contact happens,
i.e., ®"(q) = 0, u should not be 0 as it will give out contact forces at each of the contact points.
Similarly, if ®"¢(q) < 0, it means that the contact has not yet formed and corresponding y = 0.
Furthermore, Gauss’ principle of least constraint [19] is a least squares principle stating that the
true accelerations of a mechanical system of N masses is the minimum of the quantity:

7 — N s Fj 2 5
=Y mjli— (5)
i m;

where the j'* particle has mass m j» position vector r;, and applied non-constraint force F; acting
on the mass. Assuming a constant mass matrix M = diag[m,m,Ji,...,my,my,Jy] and plugging
equations (2) and (3) in equation (5), the governing objective function for the system can be repre-
sented as the minimum of the difference in constrained and unconstrained accelerations as shown
in equations (6) and (7) .

Z = (4~ Guc) M(d— duc) (6)

z= (Mo (q)p) ‘™ (M@ (q)u) (7)

Hence, the problem can be stated as a quadratic programming problem subjected to the comple-



mentary constraints with an objective function to be minimized as given below:

. —1 xineq’ r —1 gyineq”
min (M5 (q)u) M (M 0f (q) )
st. Mg+ <I>Z“"1T (Qu+S(q,q)—Qs=0
cpineq (q) * Il = 0 (8)
cpineq (q) < 0
u>0

2.2 Discretization and solution strategy

Available are the accelerations, velocities and positions of the generalized coordinates: ¢,—1, q,—1
and q,_ respectively at time #,_;. Required is to evaluate the accelerations, velocities and posi-
tions of generalized coordinates: ¢, ¢, and q, respectively at time ¢,, with time step /,. Using
implicit Euler’s expansion we have the following relationships:

4 =qn 1+ hn‘jn (9)

i, = % (10)
n

qn :qn—1+hnqn (11)

In =11 +hn (12)

The optimization problem, as stated in equation (7), at time ¢, is formulated as follows:

T T T
min - (MO9G (q) ) M (M5 (q,) 1)
st My + 7 () oy +S (G 1) —Qa =0
"1 (q) * y =0
" (q,) <0
1y, >0

(13)

Plugging the expressions from equations (10-12), we get the following optimization problem at
the time #,:

. T .
min (Milq)gqu (qn—l +hnqn) .un> M (Milq)i;qu (qn—l +hnqn) .un)
qn — qn—1 ineq” . N o
st. M 0 +@¢! (qn—1+ ) o +S (@1 + 1nGn, 42) —Qa =0
n
q)ineq (Qn—l _|_hnqn) * Uy = 0 (14)
" Q-1 +hnln) <0
L >0
het > hy 2> he-

Here, the optimal values of &,, 1, and {, need to be found at time #,. The scalar terms h.+ and
he- respectively, are the minimum and maximum finite positive values of time-step size. Once the
optimization problem has been solved at a time ¢,, the value of ¢, and %, can then be utilized to
evaluate and store the accelerations ¢, and the positions q, using equations (10) and (11).



2.3 Formulation of constraints for prismatic joints with clearances

Figure 1 shows a system of two bodies i and j forming a prismatic pair with two-sided clearance
c. The generalized coordinates of bodies are q; € R* and q j € IR? respectively. Let points a and
b represent the two ends of center-line of body j in global frame of reference. Let points p and
r represent the two ends of center-line of body i in global frame of reference. The perpendicular
distances of points p and r from the center axis of body j are dp and d, respectively. Let A(6;)
A(6;) be the rotation matrices of the respective bodies. Given the local coordinate vector s; of an
arbitrary point x in body i, the position of point x can be evaluated in global frame as ry using
equation (15).

ry =i +A(6)s] (15)

Figure 2 illustrates the possible cases on contact between the two bodies. Considering ¢ of a
very small magnitude in comparison to other dimensions of the components, the perpendicular
distances dy, and d, should always be follow the inequalities (16).

dp—c
{dr—c] <0 (16)

The perpendicular distance of a point k € [p,r| from a line passing through points a and b can be
evaluated as per equation (17)
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Figure 1: Schematic representation of planar prismatic joint with clearance
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Figure 2: Contact cases: a. Line contact, b. two-point contact, c¢. single-point contact

Furthermore, the maximum possible angular misalignment can be represented as 5; where [ =

min(|p —r|,|a—b|). The constraint on angular misalignment 66 can be evaluated as the angle
between the vectors d; =r —p and d; = b — a as per equation (18).

d;.d;
[1di].[]d]]

866 =cos™! (18)



Hence, the complete constraint vector for a planar prismatic joint with clearance is given in equa-
tion (19)

oM (q) = | dp—c | <0 (19)
00 — 5

2.4 Algorithm

A step-by-step procedure to implement the formulation discussed in previous section has been
explained below. For a target simulation time .

1. Start with initial values of Yo = Yy_1 = [hn—1, [.L;lril, q,ffl]T at time ty = t,,_; such that con-
straint equations in (13) are satisfied. For the initial values of generalized coordinates satis-
fying a negative value of gap function, the initial value of Lagrangian multipliers should be
assumed zero.

2. Perform optimization as per equation (14) with Yo = Y1 as initial guess solution. Op-
timization toolbox of the numerical analyses software prove to be very effective. Rec-
ommended optimization algorithms include sequential quadratic programming and interior
point methods.

3. Obtain the optimal values of Yy, = [h,, i) ,q,{]T and evaluate time, positions, and accelera-
tions as per equations (10-12).

4. Store the values of #,,, q,, q, and §, in the corresponding vectors and assign Y1 = Yp.

5. Repeat the steps 2, 3, and 4 until t,, = t,,,4y.

3 CASE STUDY

Figure 3 shows a simple case study of a planar prismatic joint with clearance to illustrate the proof
of concept for the proposed formulation. The case study comprises of a slider of mass m and
rotational inertia J with its center of mass denoted by the generalized coordinates q € R? and a
mass-less rod fixed at both ends. There is a clearance ¢ = 10um between the slider and the rod
and gravity acts along the —Y axis. An external force F = [f, f;, Tg]T € R? acts on the slider at a
point marked by a body-frame vector s f-
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v

Figure 3: Schematic diagram of the case study

Keeping the inertial properties and applied external force constant, the following three cases are
possible depending on the length of s’ s denoted by |s’¢|:

1. If |s'£|=0, i.e., the force f acts on the center of mass q, and gravity acting along the -Y axis.



2. If |s'f| is a small value relative to the full length of the protrusion /, the torque applied by
gravity, acting along the -Y axis, about any contact point could surpass the torque generated
by the applied force f,.

3. If |s'¢| = [ with no gravity.
The system specific details illustrated in Figure 3 are shown in Table 1.

Table 1: Case study specifications

Property | Value Units
m 5 kg
J 800 | kg —mm?
L 100 mm
Ig 20 mm
[ 10 mm
fx 50 N

4 RESULTS AND DISCUSSION

The simulation results were achieved with time step varying between le~* and le~> seconds with
constraint violation ||®"°?(q)ll < 1e~8 upon the contact formation. At the same time the equations
of motion (3) were satisfied within the limits of le~!2.

41 Casel:|s's[=0

As discussed in section 3, if |s'¢| = 0, there is no external torque acting on the slider. As expected,
in the absence of the applied external torque, the slider would retain its initial angular orienta-
tion. However, gravity pulls the slider downwards to make a line contact with the rod. Figure 4
represents the positions of centroid, left end and right end of the slider, against time, in y and x
directions respectively. Figure 5 shows the centroidal velocities in y and x directions respectively
and Figure 6 shows contact forces acting on slider against time.

4.2 Case2: |s'f|<<!

For second case, |s'¢| was taken as 0.5mm. While the X-position and velocities remain unchanged,
Figures 7, 8 and 9 represent the Y-positions, velocities and contact forces respectively. It can be
observed that the slider retains a single point contact for most of the time at the left end, though
intermittently forming contact at the right end as well.

4.3 Case3: |s's| =1

In case 3, the external torques acting on the slider is sufficient enough to make slider contact the rod
at two diametrically opposite ends. The slider changes its angular orientation until point contact is
detected at each end of the slider. After contact detection, the slider retains its angular orientation
and moves along x direction without losing contact. Just as in case 1, the X-direction entities
remain unchanged. The figures 10, 11, and 12 represent the Y direction positions, velocities, and
contact forces respectively.

5 CONCLUSIONS

The simulation results demonstrate the efficiency of the non-smooth dynamics methodology for
simulating the joints with clearance. The mathematical representations of constraint inequalities
were carefully derived to ensure that they capture all the possible scenarios of contact formation.
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Figure 5: Case 1: Velocity vs time

The results showed that the tolerance limits of constraints during contact are also satisfied within
significant accuracy. The computational time for the popular continuous contact models is rela-
tively higher as these models evaluate contact impulse using nonlinear spring-damper elements as
functions of interpenetration between the bodies. The resulting high stiffness of the differential
equation often requires small time-step sizes during contact force evaluation. This makes the con-
tinuous contact models computationally expensive, especially when the contacts break and form
intermittently. The computational expense of the presented non-smooth formulation was observed
to be low and consistent as the time step size of 1e—3 was found sufficient for a stable solution.

Though the scope of this work included frictionless contacts, an interesting inference may be
drawn from the contact force plots. The magnitude of normal contact force varies significantly
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Figure 9: Case 2: Contact forces vs time

among the three cases discussed. Since the resisting friction force depends on the normal contact
force’s magnitude, adding friction to these simulations will impact the dynamic characteristics to a
significant extent. Studying friction in clearance joints will further throw light upon the importance
of clearances on the system’s dynamics. Besides adding friction, the further scope of this work
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includes studying planar revolute joints with clearance and then extending the methodology for

spatial systems.
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