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ABSTRACT

The simulation of feeders and conveyors in the context of multibody dynamics is typ-
ically limited by the small time step needed to fully capture their interaction with a
large number of transported bodies. In the present paper, we propose an efficient al-
gorithm based on non-smooth rheonomic frictional contact constraints that can model
the overall material drifting onto a stationary object with few parameters – namely,
the eigenvalues of the 3D motion imposed by the feeder. The method can be effec-
tively used to simulate, with reduced computational burden and large time steps, both
vibrating feeders and traditional sliding conveyors. Comparative results from the pro-
posed method and conventional full simulation of the feeder are presented, showing
markedly superior performance while retaining overall system behavior.

Keywords: Rheonomic constraints, Nonsmooth Dynamics, Cone Complementarity
Problem, Contacts, Feeders.

1 INTRODUCTION
Sliding and vibratory feeders are the most common industrial devices to relocate – and potentially
orient – large quantities of small parts along a track. The transportation process is often combined
with suitable machinery that allows to rotate these components or select only the ones having a
desired orientation. The design of such feeders, with particular reference to bowl vibratory ones,
is usually performed by trial and error, since the transportation process is complex to model in
closed form and the dynamics of repeated impacts can be chaotic (see, for example [1]). Available
analytical solutions make use of considerable simplifying assumptions, e.g. reducing the problem
to a single degree-of-freedom vibrating system and modeling material as lumped masses that move
on an inclined plane [2, 3, 4]. In order to overcome these restrictions, it is useful to restate the
governing equations of the system in the more general framework of multibody dynamics. In this
context, it is possible to simulate the motion of many components subjected to collision against an
arbitrarily-moving conveyor. However, in the case of high-frequency vibrations or large number of
parts, there is the need of reducing the simulation time step, potentially up to a point where required
CPU time becomes prohibitive. The method proposed in this work addresses the exposed problem
through an efficient and unifying approach that makes use of rheonomic cone complementarity
constraints applied only during the contact phase of interacting bodies.

The rest of the paper is divided as follows. Section 2 introduces the notation and the mathe-
matical background useful to model generic multibody systems subject to bilateral and unilateral
constraints with friction. Section 3 illustrates the idea of the proposed method and describes its im-
plementation in the context of Measure Differential Inclusion formulation. Section 4 is dedicated
to test the proposed algorithm in comparison to conventional full simulation of some systems.
Finally, Section 5 presents the evidences resulted by the work.



2 PROBLEM DESCRIPTION
The dynamic model of a generic multibody system subject to both bilateral and frictional unilateral
constraints may be formulated as a Differential Variational Inequality (DVI) [5]
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where: Eq. (1a) represents the equation of dynamics in terms of generalized coordinates q, gen-
eralized velocities v, block-diagonal mass matrix M, total external forces f̂t (including centrifugal
and gyroscopic terms), set of unilateral constraints forces GA, and set of bilateral constraint forces
GB; Eq. (1b) enforces bilateral constraints; Eq. (1c) expresses the Signorini condition through a
unilateral contact complementarity problem [6], in which φ(q) denotes the gap function and γ̂n

the Lagrange multiplier of normal reaction; Eq. (1d) models 3D Coulomb friction in terms of the
maximum dissipation principle [7, 8], resulting in a non-linear optimization problem; Eq. (1e)
maps bodies velocity into the chosen coordinates derivatives. If we account for impulsive events
(i.e. velocity discontinuities) and we reformulate both unilateral and bilateral constraints as conic
complementarities, we can restate the DVI model (1) into a more compact Measure Differential
Inclusion (MDI) form [9, 10, 11]

Mdv = ft(q,v, t)+Dεdγγγε (2a)

dγγγε ∈ ϒε ⊥ ūε ∈ ϒ
∗
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where ft(q,v, t) are the total external impulses, Dεdγγγε represents the effect of both unilateral and
bilateral constraint impulses, ϒε denotes the merging of bilateral and friction second-order Lorentz
cones (being ϒ∗

ε its dual cone), and ū is a term related to generalized contact velocity.

For general-purpose applications, the use of a cone-complementarity time integration scheme on
the full problem (2) effectively describes the evolution of the system. However, many important
engineering fields – such as automated assembling lines, food industry, granular material process-
ing, bulk material transportation – share the need of conveying a large number of small parts along
a given track. Though the process is conceptually simple, the simulation of belt conveyors, vi-
bratory feeders, or feeding tunnels is often afflicted by high computational burden and the various
cases are managed through separate approaches. In particular, very small time steps are needed to
capture the high-frequency impacts of vibrating feeders or large deformation of rubber belts.

3 PROPOSED METHOD
To address the problem, we propose a new class of contact constraints that models, in a unified
approach, both the drifting of parts in vibratory feeders – without the need of simulating their high-
frequency motion – and material advancement on sliding conveyors. In the proposed formulation,
contacts are handled as rigid interactions between moving parts and a stationary object, where a
time-dependent term is added to the complementarity constraint to enforce the tangential motion
of the parts. This model can be interpreted as a homogenization of the high-frequency contact
phenomena that generate drifting; effects such as friction limits in sticking/sliding or collision
restitution are therefore preserved.



Figure 1: Illustration of proposed method, representing imposed contact velocity as red vector
field. Left: generic surface with arbitrary motion law; center: linear sliding feeder, with constant
unidirectional motion law; right: circular vibratory feeder, with tangential velocity increasing with
radius.

Fig. 1 illustrates the overall concept. Desired eigenvalues of conveyor motion (being it a vibration
or a continuous sliding) are provided by the user in the form of a velocity vector

va = [vx,vy,vz,ωx,ωy,ωz]
T (3)

expressed with respect to a convenient absolute reference frame. Given a generic track surface (im-
ported from CAD or defined parametrically), a linear velocity is then calculated for each surface
point:
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At this point, the frictional contact set-valued force laws [12] of MDI model (2) are extended to
include a rheonomic term ct = [ctu ,ctv ]

T ∈ R2. In particular, (u,v, t) 7→ ct is the mapping of vp

in the i-th u−v contact plane, in which the normal velocity component n is discarded to avoid
unnecessary bouncing of material on conveyor surface. If such speed map is known beforehand
(e.g. from experiments or numerical/analytical models), it is possible to skip passages (3) and (4)
and directly define ct ; for example, a linear conveyor belt of constant speed s along the u direction
would simply have ct = [s,0]T.

In both cases, recalling notation of models (1) and (2), we may express each contact law at the i-th
contact point as a rheonomic cone complementarity [13]

γi ∈ ϒA,i ⊥ ūi ∈ ϒ
∗
A,i, ∀i ∈ {GA|Φi = 0} (5)

where ϒA,i and ϒ∗
A,i are the i-th unilateral contact cones, φi is the contact gap and γi is the reaction

impulse. The ūi term is then restated in function of contact relative velocity ui, tangent velocity
v∥,i = uu,i +uv,i, friction coefficient µi and the proposed ct term:

ūi =

 un,i +µi∥v∥,i∥
uu,i + ctu(u,v, t)
uv,i + ctv(u,v, t)

 (6)

With this modification, the high-performance and stability of the non-smooth formulation are pre-
served, while the simulation of transportation phenomena is performed through large time steps.

4 TESTING
In order to show the effectiveness of the proposed method, a number dedicated benchmarks have
been implemented in C++ through the Chrono::Engine open-source library [14]. The tests have



been computed on a Intel Core i7-10510U CPU, clocked at 1.80 GHz, with 4 physical cores and
16 GB of RAM.

Fig. 2 shows the example of a linear vibratory feeder for bulk material, composed by a vertical
inlet hopper and an horizontal outlet trough. Transported parts – produced at a given flow rate –
are represented by prismatic boxes whose sizes are randomly generated at runtime from a normal
distribution; collisions, in this case, are computed between primitive shapes. At first, the system
is simulated using a conventional approach: vibratory motion of the feeder is imposed through
a dedicated motor, which is controlled in position with sinusoidal laws; upon impact, friction
between trough and parts transmits motion to the latter. In a second run, the same system is
simulated by the means of the proposed method. In this case, the feeder is modeled as a stationary
object imposing a velocity law va = [vx,0,0,0,0,0]T; proper rheonomic constraint ct = [vx,0]T

is applied to transported parts when contact occurs. In the bottom-right corner, Fig. 2 reports
a comparison of material average drifting speed computed with the two approaches: while the
overall behavior is consistent, the proposed formulation is able to proceed with a time step h= 0.01
s (Real Time Factor RTF ≡ Tcpu/Tsim = 0.38), while the conventional one requires h = 0.001 s
(RTF = 4.17).

Figure 2: Simulation of a linear vibratory conveyor for bulk material transportation; parts have
prismatic shape and normal distribution of size lengths. Bottom-right: plot of average material
speed, comparing conventional full simulation approach (red) and proposed method (blue).

Fig. 3 illustrates a second benchmark, in which a vibratory bowl feeder is used to convey the same
type mechanical components up to a helical track. At the beginning of the simulation, a given
number of these parts are generated at random positions and orientations in the central area of the
feeder. In this case, simulated body geometries are directly imported from a CAD software and
their triangular mesh is used for both visualization and collision computation. The conventional
approach models bowl vibration through a motor that produces screw oscillation about the vertical
axis; the proposed method, on the other hand, imposes va = [0,vy,0,0,ωy,0]T and than internally



Figure 3: Simulation of a bowl vibratory conveyor for mechanical parts transportation along a
helical track. Bottom right: plot of average parts vertical displacement, comparing conventional
full simulation approach (red) and proposed method (blue).

computes proper ct constraints through Eq. (4). The bottom-right part of the figure compares
components average vertical displacement: after an initial drop (corresponding to parts falling
on the feeder), components are progressively conveyed to the outlet chute. Again, the overall
drifting phenomenon is preserved, but the proposed method evolves with a time step h = 0.01 s
(RTF = 2.05) in contrast to the full simulation approach that requires h = 0.005 s (RTF = 4.45).
It is worth noting that, in this example, the main computation bottleneck consists in collision
detection among generic meshes.

5 CONCLUSIONS
We presented a non-smooth rheonomic constraint formulation that allows to efficiently simulate
frictional contacts between generically-shaped parts and sliding or vibrating feeders. The reported
benchmark tests show that the proposed method can be effectively used to simulate the overall
material drift with a unified approach and with reduced computational burden.

REFERENCES
[1] Han, I., Lee, Y.: Chaotic dynamics of repeated impacts in vibratory bowl feeders. Journal of

sound and vibration 249(3) (2002) 529–541

[2] Han, L., Gao, J.X.: A Study on the modelling and simulation of part motion in vibratory
feeding. In: Applied Mechanics and Materials. Volume 34., Trans Tech Publ (2010) 2006–
2010



[3] Lim, G.H.: On the conveying velocity of a vibratory feeder. Computers & structures 62(1)
(1997) 197–203

[4] Chandravanshi, M.L., Mukhopadhyay, A.K.: Dynamic analysis of vibratory feeder and their
effect on feed particle speed on conveying surface. Measurement 101 (2017) 145–156

[5] Tasora, A., Anitescu, M.: A matrix-free cone complementarity approach for solving large-
scale, nonsmooth, rigid body dynamics. Computer Methods in Applied Mechanics and En-
gineering. 200(5-8) (2011) 439–453

[6] Acary, V., Brogliato, B.: Numerical methods for nonsmooth dynamical systems: applications
in mechanics and electronics. Springer Science & Business Media (2008)

[7] Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with
inelastic collisions and coulomb friction. International Journal for Numerical Methods in
Engineering 39(15) (1996) 2673–2691

[8] Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM review 42(1) (2000)
3–39

[9] Moreau, J.J.: Liaisons unilatérales sans frottement et chocs inélastiques. Comptes rendus
hebdomadaires des séances de l’Académie des sciences 296 (1983) 1473–1476

[10] Moreau, J.J., Panagiotopoulos, P.D., Strang, G.: Topics in nonsmooth mechanics. Birkhauser
(1988)

[11] Anitescu, M., Potra, F.A., Stewart, D.E.: Time-stepping for three-dimensional rigid body
dynamics. Computer methods in applied mechanics and engineering. 177(3-4) (1999) 183–
197

[12] Glocker, C.: Set-valued force laws: dynamics of non-smooth systems. Volume 1. Springer
Science & Business Media (2013)

[13] Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for
nonsmooth dynamics. Computational Optimization and Applications 47 (2010) 207–235

[14] Tasora, A., Serban, R., Mazhar, H., et al.: Chrono: An open source multi-physics dynamics
engine. In Kozubek, T., ed.: High Performance Computing in Science and Engineering –
Lecture Notes in Computer Science. Springer (2016) 19–49


