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ABSTRACT

This contribution outlines a high-fidelity simulation framework for Human-in-the-
loop (HIL) traffic simulation built upon Project Chrono, an open-source physics sim-
ulation engine. The framework is designed to provide the software infrastructure for
human factors, traffic, and human-automation interplay research. We conclude this
platform overview paper with two use cases – a human-factors study and an experi-
ment involving a ring traffic scenario that displays the formation of phantom traffic
jams.

1 INTRODUCTION
Human-in-the-loop (HIL) simulation provides a safe and inexpensive testing environment for
many vehicle operation scenarios that involve human intervention. To be effective, HIL simu-
lation requires high-fidelity vehicle dynamics and a realistic virtual driving environment. HIL is
important in studying human-automation interplay in the context of autonomous vehicle operation,
human-machine interaction for human factors testing, traffic simulation involving one or more hu-
man drivers, driving simulation for clinical applications, etc. For HIL simulation, to accurately
capture a human’s reaction to a vehicle and its environment, three aspects of the simulation need
to be considered and properly implemented: (i) a realistic vehicle dynamics response, such as the
vehicle’s pitch, roll, and yaw; (ii) the rendering of a realistic virtual driving environment; and
(iii) real-time simulation performance. We report on a simulation framework built upon Chrono
[1] that addresses the requirements of HIL simulation above by leveraging high-fidelity vehicle
simulation, high-performance computing, high-accuracy rendering, and sensor simulation. The
open-source simulation module is called Chrono::HIL and leverages the Vehicle, Sensor, and Syn-
chrono modules in Chrono.

2 Chrono::HIL Highlights
2.1 Vehicle dynamics simulation at multiple fidelity levels
Two major vehicle dynamic models can be chosen from - Chrono::Vehicle model or a Reduced-
Order Model (ROM) vehicle, see Figure 1(a). The highest fidelity model is directly defined in
Chrono::Vehicle, as shown in Figure 1(b), which provides a template-based vehicle definition.
The Chrono::Vehicle module provides simulation support for all mechanical components of the
vehicle, including but not limited to chassis, tire models, suspensions, drive trains, engines [2]. The
Chrono::Synchrono module allows vehicles to be simulated in parallel by different CPU processes
via MPI or DDS [3]. Although the Chrono::Vehicle model provides high-fidelity vehicle-dynamic
simulation, the computational load is heavy and the simulation does not scale very well. The initial
benchmark shows that the simulation of one Chrono::Vehicle model on one CPU thread results in
an real-time factor (RTF) of around 0.6 (RTF represents the amount of compute time required to



(a) Schematic of the Chassis of the ROM [4, 5] (b) Schematic of the Chrono::Vehicle Model [2]

Figure 1. Two types of vehicle dynamic models are used in Chrono::HIL - A high fidelity
vehicle as used in Chrono::Vehicle submodule, and a lower fidelity, but more computationally
lightweight model known as Reduced-Order Model

simulate 1 second of motion of the system). While the Chrono::Synchrono does enable close-to-
linear scalability, as shown in Figure 2(b), it remains difficult to achieve real-time performance
when the amount of traffic vehicles exceeds 30 as synchronization cost increases significantly and
such a large fleet of high-fidelity vehicles require a large amount of computing power.

As an alternative, Chrono::HIL also provides 21-DOF ROM vehicles to allow faster simulation
speed with simplified vehicle dynamics. The ROM provides lower-fidelity but faster simulation
speed for vehicles not in focus, “background” vehicles. The ROM ensures the influence of the
vehicle dynamics in the traffic flow can be captured, and the control desired can be imposed and
simulated on the traffic vehicles. The schematic of the chassis of ROM is shown in Figure 1(a). The
ROM vehicle model provides fast simulation of the chassis’ motion and vehicle’s wheel motion,
while ignoring the mechanical components of the steering mechanism and suspensions. The ROM
vehicle model utilizes the TMeasy Tire model. An experiment has been conducted to examine
the vehicle dynamic responses of the Chrono::Vehicle model and the ROM vehicle model. Both
models use the same vehicle parameters which simulate a military HMMWV vehicle, including
vehicle’s weight, chassis inertia, powertrains, and tire parameters. The Chrono Vehicle is initial-
ized at location [0,0] and the ROM model is initialized at location [0,4].The entire benchmark
comparison simulation lasts for 16 seconds, and the control commands provided to the simulation
includes the following: 50% throttle input and 20% left steering input between simulation time
t=3s and t=8s; 30% throttle input and 40% right steering input between simulation time t=8s and
t=10s; 80% braking input between simulation time t=10s and t=14s. The trajectories are shown in
Figure 3(a), and the vehicle dynamic’s response is shown in Figure 3(b), Figure 3(c), and Figure
3(d). Since the ROM doesn’t include the vehicle’s pitch, the pitch angle response of the ROM
remains at 0 in Figure 3(b).

2.2 Hardware Coupling and Rendering
Chrono::HIL provides flexible controller coupling capabilities to support a range of driving simula-
tor platforms, from a simple one-screen desktop setup to a full-cabin driving simulator. Chrono::HIL
achieves this by providing two types of controller input reading methods - direct and hardware
streaming. Specifically, it can be programmed to read inputs directly from a joystick connected
to the same machine running Chrono::HIL. If the driving simulator is being driven by an exter-
nal third-party software, Chrono::HIL is able to accept inputs from a UDP network data stream.
This latter scenario is illustrated in Figure 4(d), which shows the coupling of Chrono::HIL with a



(a) Scaling of ROM on one CPU thread (b) Scaling test of single-threaded
Chrono::Vehicle and parallelized multi-
threaded Chorno::Syncrhono high-fidelity
vehicle models

Figure 2. Scalibilities of different vehicle dynamic models

(a) Trajectory (b) Pitch (c) Row (d) Yaw

Figure 3. Vehicle dynamic response of the Chrono::Vehicle model and ROM to the same set
of control inputs

full-cabin driving simulator in the Traffic Operations and Safety Laboratory at the University of
Wisconsin-Madison. Therein, the simulation is conducted by Chrono::HIL – the driver’s inputs
were sent through as a UDP packet and captured by proprietary third-party software. Chrono::HIL
also provides native support of driving controller connected directly to the Chrono::HIL simulation
machine through the usage of SDL2 interface.

Multiple rendering methods can be chosen. Chrono::Sensor uses NVIDIA’s Optix ray-tracing API
to provide both sensor simulation and graphics rendering [6]. Users of Chrono::HIL can directly
launch the rendering window from Chrono::HIL with easy camera definition as Chrono::Sensor is
well embedded to work with any simulation created within Chrono. Alternatively, other embedded
rendering engines in Chrono such as Irrlicht and VulkanSceneGraph can also be used. A network
interface allows users to communicate with third-party rendering pipelines, such as Unity.

2.3 Soft Real-Time Enforcing
Chrono::HIL ensures that the simulation time is periodically and with high frequency synced to
the real time. In other words, the RTF has to be precisely 1. Chrono::HIL employs a soft real-
time synchronization method in which the program might sometimes allow simulation steps to run
slower than real-time. As shown in Figure 4(c), if a simulation step runs slower than real time, it is
expected that a later simulation step runs faster than real time to average out at an RTF=1. In cases
when the simulation step runs faster than real time, an active synchronization delay is employed
to delay the simulation via a “sleep” function call.

A benchmark experiment has been conducted to compare the RTF sampled from the simulations
with real-time enforcement on and off. The benchmark experiment involves one Chrono::Vehicle
running on one CPU thread on a rigid terrain, with terrain collision, as shown in Figure 4(b).
The RTF sampling results can be found in Figure 4(a). The benchmark experiment lasts for 60s in



(a) Real-Time Factor of the benchmark
simulation with real-time enforcement and
without real-time enforcement

(b) A benchmark simulation of a rural driving sce-
nario, involving one Chrono::Vehicle on collidable
rigid terrain

(c) chrono::HIL soft-real time enforcement
schematic

(d) Chrono::HIL provides flexible hardware
coupling and rendering capability.

simulation time, and global RTF, the real time count-down starts at the beginning of the simulation,
is sampled every 0.5 s. At the beginning of the simulation, an unusual RTF spike is noted as the
initialization of the simulation is usually costly. As the simulation stabilizes, real-time enforcement
in Chrono::HIL ensures the RTF sampling stabilizes at 1.

2.4 Vehicle Following Behavior Definition
The path and lane data need to be defined as a Bezier curve in the simulation. A PID steering
controller is used to output steering data to ensure the vehicle stays on the path. Speed control
can be defined by customized driving control algorithms to provide different driving behaviors. In
Chrono::HIL, two types of control can be used - a PID controller for autonomous cruising vehicles
and an Intelligent Driver Model (IDM) used to simulate the human driver’s control of the vehicle.

IDM is a deterministic and collision-free car-following model [7]. IDM has been widely used in
the industry as its parameters can be interpreted and matched with values with physical meanings.
The IDM computes the desired acceleration for the vehicle at a certain state and time. The accel-
eration is then translated to throttle and braking commands using a PID speed controller to control
the vehicle.

The equations used for the IDM model are
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(e) Chrono::HIL used for studying
human-automation interplay.

(f) Photo of Test Case 2 Human-in-the-
loop experiment in progress

(g) Birdeye view of the experi-
ment of Test Case 2

Figure 4. Chrono::HIL provides a cost-effective and controllable environment for traffic flow
ring experiment

where

1. s0, in m, is the standstill distance between the lead vehicle and the following vehicle when
both two vehicles brake to a stop

2. v0 is the desired cruising speed for the following vehicle in m
s

3. a is the maximum acceleration of the following vehicle in m
s2

4. b is the maximum deceleration of the following vehicle in m
s2

5. T is the time gap in second

6. v is the current speed of the following vehicle

7. ∆v is the speed difference between the following vehicle and the lead vehicle.

3 Demonstration of technology
The open-source nature of the software allows customization and freedom to define a spectrum
of driving scenarios by controlling the environment, ego car dynamics, lead vehicle behaviors,
etc. Chrono::HIL has been recently used in human-factor research. Two data collection scenarios
have been conducted – a human factor distraction experiment, which showcases the capabilities of
simulation to reproduce dangerous edge cases [8] and a classic ring experiment [9] involving one
human driver in the loop, which showcases the ability to simulate real life traffic behaviors and
provide useful data for researchers in traffic dynamics.

3.1 Human Factor Research for Human-Automation Interplay
Chrono::HIL is being used to conduct research that examines human-automated vehicle interac-
tion. These interactions often determine whether or not the expected benefits of automated vehicles
materialize. In the future, highly automated vehicles will allow drivers to switch between manual
and automated control [10]. In cases where the automation is fully capable of navigating the driv-
ing environment, driver-initiated transitions to manual control (i.e., disuse of vehicle automation)
eliminate the potential benefit of the automation. This disuse of vehicle automation can degrade
traffic flow, which might be smoother and more efficient when drivers use vehicle automation [11].
Understanding the factors that provoke disuse of the vehicle automation can improve automation
acceptance and trust and reduce disuse [12].

One such factor in human factors research is the concept of driving style similarity [13]. The
hypothesis guiding driving style similarity research is that vehicle automation that drives in a
manner similar to how the driver may drive manually may increase drivers’ trust and acceptance
of the automation [14]. Chrono::HIL makes it possible to examine these factors empirically



by exposing drivers to different driving styles of automation and observing how drivers interact
with the automation. For instance, drivers that tend to drive conservatively with longer headways
may distrust vehicle automation that drives aggressively with shorter headway. Such interactions
may undermine trust, leading drivers to disengage the automation. An ongoing driving simulator
experiment with human subjects leverages Chrono::HIL to examine the effect of driving style
similarity on trust in automation.

The effect of driving style similarity on trust in automation is examined using a driving simula-
tor experiment that exposes drivers to a simple car-following scenario. During the experiment,
participants are situated in the following vehicle and can switch between driving in manual and
automated mode. When drivers switch to the automated mode, vehicle automation is programmed
to drive conservatively in some drives and aggressively in others. Conservative and aggressive car-
following driving styles are dictated by the car-following model parameters that are implemented
in Chrono::HIL. These parameters modify automated vehicle driving style based on time headway,
standstill distance, desired velocity, desired acceleration, and desired deceleration. In addition to
modifying the behavior of the following vehicle, Chrono::HIL also makes it possible to modify
the lead vehicle’s behavior. The lead vehicle that participants encounter in the experiment scenario
follows a preset path and speed profile that simulation generates based on parameters defined by
the researcher. In this study, participants are exposed to two types of lead vehicle behavior. In some
scenarios, the lead vehicle drives below the posted speed limit, and in others, it drives smoothly
at the posted speed limit. Thus, Chrono::HIL simulation makes it possible to vary two general
behaviors in the driving simulator experiment: (1) the driving style of the following vehicle (con-
servative versus aggressive), and (2) the behavior of the lead vehicle (slow driving versus normal
speed).

A combination of these variables allows testing four conditions of human-automated vehicle inter-
actions in which driver-initiated transitions to manual control can be studied. Table 3.1 shows the
average values of the parameters differentiating the driving behavior across the four conditions.
Figure 5(a) shows the speed profiles of the automated vehicle following a lead vehicle across the
four conditions. Data from a pilot study in Chrono::HIL conducted with four drivers (3 female, and
1 male; aged between 25 and 55) is shown in Figure 5(b). During the study, drivers were instructed
to use the automated vehicle to reach a destination located 2.3 miles away from the starting point
in less than 3 minutes while staying at or below the posted speed limit (55 mph). They were also
informed that they may choose to drive in automated or manual mode to achieve this goal. A
countdown timer and the estimated time of arrival based on the following vehicle’s speed were
shown on the dashboard to help guide decisions to transition between automated and manual con-
trol. Figure 5(b) shows the transitions of drivers between automated and manual control. The
amount of time drivers spend in automated mode and the number of transitions to manual control
can serve as indicators of trust in the vehicle automation. More time spent in automated mode and
fewer transitions to manual control may indicate high trust in the automated vehicle. Table 3.1
shows the mean percent of time spent in automated mode and the mean number of driver-initiated
transitions to manual control across all the conditions tested in Chrono::HIL. These data provide
the foundation for estimating parameters of driver models, which can be incorporated into the sim-
ulation for parametric testing of automated vehicle control algorithms. These tests can reveal the
effect of algorithm parameters on vehicle behavior, but more importantly, on traffic behavior.

3.2 Ring Experiment for Traffic Flow Research
Capturing the dynamics and the response of the traffic flow when instabilities are introduced is
crucial for traffic flow research and human-factor research. The simulation of the traffic flow
needs to capture the instabilities and the propagation of the traffic wave when perturbations are
introduced, amplified, and grown in the traffic wave, also known as a phantom traffic jam. The
instabilities can be generated in many ways, such as human drivers’ response time, lane-changing
behavior, or the in-homogeneity of the dynamics of the vehicle involved in the traffic flow. The



(a) Speed profiles of the automated vehicle fol-
lowing a lead vehicle across the four conditions.

(b) Data from pilot study with Chrono show-
ing four drivers transitioning between automated
and manual driving model across four combina-
tions of experimental conditions.

Figure 5. The speed profile of all 23 vehicles involved in each experiment during the first
200s of experiment, the Ego Vehicle’s (ID 13) speed profile is shown in blue.

Aggressive AV Conservative AV
Slow LV Normal LV Slow LV Normal LV

Mean speed (m/s) 13.39 22.17 14.15 21.49
Mean acceleration (m/s2) 0.52 0.56 0.50 0.52
Mean deceleration (m/s2) 0.47 0.43 0.49 0.47
Mean headway (m) 10.44 32.51 24.99 70.10
Standstill distance (m) 3.1 3.1 10.1 10.1

Table 1. Parameters differentiating the aggressive and conservative automated vehicle while
interacting with a lead vehicle.

Aggressive AV Conservative AV
Slow LV Normal LV Slow LV Normal LV

Mean percent of time
spent in automated mode

75.03 63.59 59.51 73.82

Mean number of driver-initiated
transitions to manual control

2.00 2.25 2.75 1.75

Table 2. Mean percentage of time spent in automated mode and the number of driver-initiated
transitions to manual control across all four experimental conditions



experiment attempted to capture such traffic flow phenomena through a ring experiment.

Although such phenomena and experiments can be conducted in a field experiment [9], they are
costly and difficult to set up. Chrono::HIL provides a controllable and cost-effective way for
researchers to investigate traffic flow without the hassle to set up the field experiment. In the
experiment we have conducted, we have run five different test cases, which involved different
experiment setups, to examine the overall traffic flow dynamic response and total pass-thru per-
formance. Three types of IDM drivers, as shown in Table 4, and three types of vehicle dynamics
have been modeled. The details about the experiment test cases are shown in Table 3.

Each experiment lasts for 20 minutes, and the speed profiles are shown in Figure 3.2 for all 23
vehicles involved in the traffic ring experiments.

Table 3. Experiment Scenarios
Test Case No. Description Ego Vehicle Ego Vehicle

Average Speed [m/s] Total Wait Time [s]
Test Case 1 Mixed vehicle types and

mixed IDM drivers
1.8488 691

Test Case 2 The ego vehicle is driven by
human, mixed vehicle types
for other traffics and mixed

IDM drivers[15]

1.8259 777.2

Test Case 3 Same vehicle type vehicles
are driven by different IDM

drivers

1.7708 812.4

Test Case 4 All vehicle has the same
dynamics and are driven by

the same IDM driver

7.6605 0.4

Test Case 5 Mixed vehicle dynamics, the
same IDM driver parameter

2.6064 603

Table 4. IDM Parameters Used in the Experiment
Aggressive Neutral Conservative

Desired Speed, v0 [m/s], 8.9408 8.9408 8.9408
time gap, T , [s] 0.1 0.2 0.7

Standstill bumper-to-bumper spacing, s0, [m] 5.0 6.0 8.0
Max acceleration rate, a, [m/s2] 3.5 3.0 2.5
Max deceleration rate, b, [m/s2] 2.5 2.1 1.5

Acceleration exponent, δ , [-] 4.0 4.0 4.0

4 Conclusion and Future Work
Video gaming usually focuses on the excitement of the experience and pays limited attention to the
fidelity of the simulation itself. At the other end of the spectrum, commercial driving simulation
solutions are often expensive, closed source, and lack the ability to easily customize/adapt simu-
lation scenarios and data collection. The Chrono::HIL framework aims to democratize the use of
simulation as a tool for traffic and human factors research. Owing to its open-source nature, the
proposed Chrono::HIL framework leverages high-fidelity vehicle dynamics simulation and high-
performance parallel computing to allow broad customization of the experimental environment.
Looking ahead, we plan to provide a more user-friendly software interface to allow researchers to
control scenario parameters and deploy simulation quickly. A second development thrust is tied
to improving Chrono::HIL’s execution speed, which gets compromised on slow hardware or when
used for complex scenarios.



Table 5. Vehicle types and IDM driver parameters used in Test Case 1 and Test Case 2

Vehicle ID Vehicle Types IDM Driver Type
0 Sedan 1 - Nissan Sentra Aggressive
1 Sedan 2 - Audi A3 Neutral
2 Heavy Utility - HMMWV Aggressive
3 Heavy Utility - HMMWV Conservative
4 Sedan 1 - Nissan Sentra Aggressive
5 Heavy Utility - HMMWV Neutral
6 Sedan 2 - Audi A3 Neutral
7 Sedan 2 - Audi A3 Aggressive
8 Heavy Utility - HMMWV Conservative
9 Sedan 2 - Audi A3 Aggressive

10 Sedan 1 - Nissan Sentra Conservative
11 Heavy Utility - HMMWV Aggressive
12 Heavy Utility - HMMWV Aggressive

13 [Ego Vehicle] Sedan 2 - Audi A3 Neutral
14 Sedan 1 - Nissan Sentra Conservative
15 Heavy Utility - HMMWV Aggressive
16 Sedan 1 - Nissan Sentra Conservative
17 Heavy Utility - HMMWV Neutral
18 Heavy Utility - HMMWV Aggressive
19 Sedan 2 - Audi A3 Neutral
20 Sedan 1 - Nissan Sentra Conservative
21 Heavy Utility - HMMWV Aggressive
22 Sedan 1 - Nissan Sentra Conservative

Table 6. IDM driver type specified
in Test Case 3, while all vehicles are
Sedan 1 - Nissan Sentra Type

Vehicle ID IDM Driver Type
0 Aggressive
1 Conservative
2 Neutral
3 Conservative
4 Aggressive
5 Neutral
6 Conservative
7 Aggressive
8 Conservative
9 Aggressive
10 Conservative
11 Aggressive
12 Conservative

13 [Ego Vehicle] Neutral
14 Conservative
15 Aggressive
16 Conservative
17 Neutral
18 Aggressive
19 Neutral
20 Conservative
21 Aggressive
22 Conservative

Table 7. Vehicle type specified in Test
Case 5, while all vehicles use the ag-
gressive type of IDM driver

Vehicle ID Vehicle Type
0 Sedan 1 - Nissan Sentra
1 Sedan 2 - Audi A3
2 Heavy Utility - HMMWV
3 Sedan 1 - Nissan Sentra
4 Sedan 2 - Audi A3
5 Sedan 2 - Audi A3
6 Sedan 1 - Nissan Sentra
7 Heavy Utility - HMMWV
8 Sedan 1 - Nissan Sentra
9 Sedan 2 - Audi A3
10 Sedan 2 - Audi A3
11 Heavy Utility - HMMWV
12 Heavy Utility - HMMWV

13 [Ego Vehicle] Sedan 1 - Nissan Sentra
14 Heavy Utility - HMMWV
15 Sedan 2 - Audi A3
16 Sedan 1 - Nissan Sentra
17 Heavy Utility - HMMWV
18 Sedan 1 - Nissan Sentra
19 Sedan 1 - Nissan Sentra
20 Sedan 2 - Audi A3
21 Heavy Utility - HMMWV
22 Sedan 1 - Nissan Sentra
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