
ECCOMAS Thematic Conference on Multibody Dynamics
July 24 - 28, 2023, Lisbon, Portugal

A Continuous Contact Force Model for Highly Damped Impacts of
Arbitrary Material and Geometry

Dylan A. Ramaswamy1, J. Sean Humbert2

1 Department of Mechanical Engineering
University of Colorado Boulder

Boulder, CO, 80309, United States
dylan.ramaswamy@colorado.edu

2 Department of Mechanical Engineering
University of Colorado Boulder

Boulder, CO, 80309, United States
sean.humbert@colorado.edu

ABSTRACT

In this work, further analysis is done on the Hunt-Crossley contact force model to both
better understand its behavior and estimate parameters. Through nondimensionaliza-
tion, the model’s damping and stiffness characteristics are presented in new ways, in
terms of a damping ratio and natural frequency. These parameters lead to the deriva-
tion of a new form of the Hunt-Crossley model for use in practice. Additionally,
the approximation for the velocity-deformation relationship throughout impact is im-
proved so that its curvature may vary with increased damping. This improvement
leads to the derivation of a new expression for the hysteresis damping coefficient that
is accurate for highly damped impacts. To finish, work is done to allow for empirical
determination of stiffness. Utilizing the derived natural frequency, an expression is
generated so that the model stiffness can be determined from the total time of impact.
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1 INTRODUCTION
In 1975, Hunt and Crossley proposed the first mathematically valid model of dissipative impact.
The Hunt-Crossley model prescribes the normal force throughout contact as

FN = λδ
n
δ̇ +Kδ

n, (1)

where λ is the hysteresis damping coefficient, K is the system stiffness, n is the Hertzian (or topo-
logical) exponent, and δ and δ̇ are the deformation and deformation rate (velocity) respectively
[1]. The second term, Kδ n, is the longstanding Hertz term which characterizes the stiffness effects
of impact, while the first, λδ nδ̇ , was the Hunt-Crossley addition made to accommodate impact
dissipation [2, 1]. This term is crucial, for all real-world impacts are dissipative, intrinsically
hysteretic, and oftentimes to nonnegligible degrees.

The issue with the Hunt-Crossley model is that it is difficult to use in practice. Mathematically
valid though it may be, the very inclusion of the damping term makes its use in applied simulation
challenging. To model any real-world impact, each system parameter must be known: these are
λ , K, and n. For the contact between linear elastic spheres, K is known, can be analytically
formulated from conventional material descriptions; n is also known, derived from the geometry
of the spheres [3]. λ , however, is more abstruse, amorphous, and at the time of Hunt-Crossley’s
formulation, had no analytical means of determination, as is still the case.

Hunt and Crossley addressed the issue via empirical relation. They proposed that if one could
determine the coefficient of restitution of impact, an empirical parameter, it would be consequently
possible to determine from it the model parameter, λ [1]. This is where the bulk of the work in
the field has been done since 1975, in improving the relationship between λ and the coefficient of
restitution, cr [4, 5, 1, 3, 6].

The accuracy of this relationship is important, and further efforts will be made here to remedy cer-
tain inaccuracies that still exist in its prominent solutions. A principal point of this work, though,



is to emphasize the following about λ : it is but one piece of the puzzle. What about the other
principal system parameter, the stiffness, K? The tunneled focus on λ has left K mostly ignored
in the field. Certain analytical expressions for K exist, yes, but only for simple cases, for impacts
between linear elastic materials of simple geometry [3]. This limitation must be stressed. What
about impacts between objects of nonstandard geometry, what about impacts between nonlinear
elastic materials? For impacts of more general nature, there are currently no means available for
determining the stiffness parameter. Even if λ can be determined, K cannot. This is to say that the
Hunt-Crossley model is still unusable for most impacts in practice.

This paper is organized as follows: The subsequent section, Section 2, will begin with the refor-
mulation of the Hunt-Crossley model. This reformulation will be useful in that new behavioral
parameters of the model will be derived, allowing for the stiffness and damping characteristics
to be expressed in more convenient forms. Section 3 will address the λ (cr) relationship and the
areas where it still lacks accuracy. Correcting inaccuracies in the velocity-deformation relation-
ship throughout impact, a new expression for λ (cr) will be produced that is accurate in the limit
as cr → 0. The final section, section 4, will address the issue of stiffness. New theory will be
developed so that K may be empirically determined, allowing for a first time method of stiffness
determination in general cases, in impacts of both arbitrary material and geometry.

2 Reformulation of Hunt-Crossley
To derive a secondary form of the Hunt-Crossley model, it is necessary to nondimensionalize it.
Nondimensionalization is a powerful tool in that it is modular, can be applied to linear or nonlinear
systems, and allows one to study a differential equation in a purely behavioral sense. In differential
form, the Hunt-Crossley model is written as [1]

mδ̈ +λδ
n
δ̇ +Kδ

n = 0. (2)

This is the standard form of the dynamic equation. To translate it into dimensionless space, it is first
necessary to define base dimensionless parameters for the system’s dependent and independent
variables. The base dimensionless parameters for the Hunt-Crossley model are selected to be

Ẋ =
δ̇

δ̇0
,

τ = ωit.
(3)

Here, Ẋ is the dimensionless velocity and τ the dimensionless time. Ẋ is a function of τ , the same
way δ̇ is a function of t in dimensional space. δ̇0 is the incidence velocity, the velocity immediately
before impact, and ωi is some arbitrary time constant. That Ẋ is selected as the base dependent
variable is an important point of note. Oftentimes the zeroth derivative, X , is selected (as in the
nondimensionalization of the Kelvin-Voigt model), but for Hunt-Crossley it is crucial to use Ẋ .
Velocity is what triggers impact, not deformation. Deformation is a response to the input, and as
such has mathematically unbounded limits. The limits of velocity, conversely, are bounded; the
velocity can only ever exist between ±δ̇0. Furthermore, δ̇0 is a known parameter, making its use
in the nondimensionalization process a necessity.

The expression for Ẋ in (3) can be both integrated and differentiated to generate expressions for
both X and Ẍ , the zeroth and second derivatives respectively. With these two relationships de-
rived, all three of the dependent variable relationships can be presented in terms of dimensional as
functions of dimensionless.

δ =
δ̇0

ωi
X ,

δ̇ = δ̇0Ẋ ,

δ̈ = ωiδ̇0Ẍ .

(4)



Substituting these relationships into equation (2), the Hunt-Crossley model can be brought into
dimensionless space. With simplifications, the dimensionless equation follows:

Ẍ +
λ δ̇0

n

mω
n+1
i

XnẊ +
Kδ̇0

n−1

mω
n+1
i

Xn = 0. (5)

Note that the time constant, ωi, factors into both the damping and stiffness terms. It can be derived
here through normalization. Per standard procedure prescribed for second order differential equa-
tions, ωi is derived through the normalization of the the stiffness term, Xn, rather than the damping
term, XnẊ . Proceeding with this normalization and solving, ωi results as follows:

ωi =

[
Kδ̇0

n−1

m

] 1
n+1

. (6)

This is the undamped natural frequency of the Hunt-Crossley model. To differentiate it from the
natural frequency of the Kelvin-Voigt model (ωn =

√
k/m), ωi will be christened here as the impact

natural frequency. Comparing it to ωn, it can be noted that ωi depends on the initial condition, δ̇0,
as well as both the stiffness and mass. Interestingly, when n = 1, when the impact is linearly stiff,
velocity does not play a factor. Furthermore, when n = 1, ωi is exactly equal to ωn.

The expression for ωi can be substituted into (5) to eliminate it from the equation. The result, after
simplification, follows:

Ẍ +
λ δ̇0

K
XnẊ +Xn = 0. (7)

The only term remaining with values attached is the damping term. This allows one to determine
that it is these parameters, and these parameters alone, that affect the damping characteristics of
Hunt-Crossley impact. To simplify the equation fully, these three parameters will be grouped:

ε =
λ δ̇0

K
. (8)

ε is christened as the hysteresis damping ratio. Like with ωi, the incidence velocity factors into
its definition. An interesting insight from ε is that it is mass independent. Note that damping in
Kelvin-Voigt, its damping ratio given by ζ = c

2
√

km
, does depend on the mass of the system. That

damping in Hunt-Crossley is independent of mass is an interesting insight, and would be important
to verify in experiment.

Substituting the definition of ε into the result in (7), the dimensionless equation simplifies to

Ẍ + εXnẊ +Xn = 0. (9)

This is the final form of the dimensionless Hunt-Crossley equation. Note that its boundary con-
ditions are X(0) = 0 and Ẋ(0) = 1. This form allows for pure behavioral study of the model’s
character. That only ε and n factor into its definition signifies that it is just these parameters that
control the behavior of its solutions.

The final step is to generate a new dimensional form of Hunt-Crossley that incorporates the be-
havioral parameters ε and ωi. This can be done by redimensionalizing equation (9). Using the
relationships in (4) for the redimensionalization, the following equation is produced:

δ̈ +
ω

n+1
i

δ̇0
n δ

n(εδ̇ + δ̇0) = 0. (10)

This is a secondary form of the Hunt-Crossley model, its acceleration form. Its input parameters
are ε , ωi, and n. Note that the incidence velocity, δ̇0, also factors as a parameter in its formulation.
This form allows for one to characterize Hunt-Crossley’s damping and stiffness properties in terms
of the new parameters ε and ωi rather than the traditional λ and K. This fact will be particularly
important for the work done on stiffness characterization in section 4.



3 Damping as it relates to coefficient of restitution
Before tackling stiffness, the λ (cr) relationship is sought to be improved so that it is accurate in
the limit as cr → 0. The relationship has existed in many forms, but the general form that will be
built upon here is that of the Flores et al. and Hu-Guo solutions [4, 5].

The longstanding method for determining an expression for λ (cr), put forth initially by Hunt and
Crossley themselves, is to solve for λ in the following dissipative energy balance [1]:∮

λδ
n
δ̇ dδ =

1
2

mδ̇0
2
(1− c2

r ). (11)

The expression itself is an exact analytical one; both sides are merely different measures of the
total energy lost in impact. The relation cannot be directly solved, however. It is for this reason
that only approximate relationships for λ (cr) can be produced.

3.1 The velocity-deformation relationship
The issue in solving equation (11) stems from the δ̇ term in the cyclic integral. δ̇ is the rela-
tionship between velocity and deformation throughout impact (it will be denoted in this paper as
δ̇ (δ ) to distinguish its dependence here on deformation separate to its dependence on time in the
differential equation). As the Hunt-Crossley model is, in its general form, analytically unsolvable,
it follows that no general analytical solution for δ̇ (δ ) can be determined. To solve equation (11),
therefore, it is such that some approximate expression must be used.

The best approximation used currently for δ̇ (δ ), used by Flores et al., Hu-Guo, and others, is
written below [4, 5, 6]:

δ̇ (δ ) =


δ̇c = δ̇0

[
1−
(

δ

δm

)n+1
] 1

2

,

δ̇r =−crδ̇0

[
1−
(

δ

δm

)n+1
] 1

2

,

(12)

where δm is the maximum deformation. δ̇ (δ ) is a piecewise function, where δ̇c governs the rela-
tionship in the compression phase, and δ̇r governs it in restitution. This approximation is accurate
in that it covers the bounds of the numerical δ̇ (δ ) solution, that which is the target of the approxi-
mation, perfectly. Where the description fails, however, is in mapping the curvature the numerical
solution takes as damping increases.

Figure 1(a) displays both equation (12) and the numerical solution for a largely damped impact
(ε = 5, cr ≈ 0.2). The failure in curvature mapping can be seen clearly. The specific failure is that
the compression function overestimates the curve, whereas the restitution function underestimates
it. The general trend for the numerical solution is that, with increased damping, the curvature
of the compression profile becomes shallower while the curvature in restitution becomes sharper.
Understanding this behavior, suitable changes to the velocity-deformation approximations can be
made to better improve their accuracy. The approximations in this work are as follow:

δ̇c = δ̇0

[
1−
(

δ

δm

)n+1
] 1

2+p

,

δ̇r =−crδ̇0

[
1−
(

δ

δm

)n+1
] 1

2−p

.

(13)

The only difference between these relationships and the previous is the addition of the variable p
into the outer exponents. p is denoted as the curvature accommodation exponent. It was noted that
the square root, the 1/2 in equation (12), is what controls the curvature of the profiles. Allowing



Figure 1. δ̇ (δ ) for ε = 5 (cr ≈ 0.2): (a) numerical solution and current best approximation,
equation (12); (b) numerical solution and improved approximation, equation (13)

the exponents to vary by some factor, therefore, allows the curvature of the profiles to be adjusted.
That the p is added in the compression function while it is subtracted in the restitution function is
indicative of how the compression curve grows shallower while the restitution curve grows sharper
with increased damping. It was observed that these respective growths follow similar rates, hence
the use of the same p in both functions.

These approximations can be fit to the numerical solution to test their validity. As p factors into
both functions, its value will be determined by the p that best fits both portions of the numerical
solution, the compression and restitution curves simultaneously. Figure 1(b) presents the compar-
ison of equation (13) to the numerical solution with best fit p. It is clear that this approximation
represents the numerical solution much better than the previous incarnation. Albeit minor dis-
crepancies still exist, the curvatures of both align almost perfectly. It is posited, therefore, that
the improved accuracy in δ̇ (δ ) here will lead consequently to improved accuracy in the resulting
λ (cr) expression, allowing for more precise determination of λ in the highly damped region.

The δ̇ (δ ) approximation must be analytically complete, however, before it can be used in the
cyclic integral for solution. The completion lies in determining an expression for p. Note that the
value of p will need to change depending on what level of damping exists. This is to say that the
p in equation (13) is not a fixed value but rather a function that varies with damping: p(cr).

Plotting the numerical solution for how p changes with cr, its general profile can be determined.
p(cr), it was seen, follows decaying exponential trajectory. The function was furthermore deter-
mined to have bounded limits: at cr = 1, p = 0 , and as cr → 0, p → 1/2. An expression that
represents these behaviors follows:

p(cr) = α(e−βcr − e−β ). (14)

Here, α and β are numerical constants. Note that the use of function is not restricted to that
selected here. There are many suitable choices. A decaying logarithm could have been used
instead, for example. The only restriction is that the function exhibits decaying behavior with
increasing coefficient of restitution.

3.2 Hysteresis damping coefficient/ratio
With a complete form of the δ̇ (δ ) approximation, the integral in equation (11) can be computed.
Substituting (13) into (11) and solving, the hysteresis damping coefficient, with p kept as a vari-



able, results as follows:

λ (cr) =
K(3+2p)(1− c2

r )

2crδ̇0

(
3+2p
3−2p

+ cr

)−1

. (15)

Note that when p is set equal to zero, this solution is exactly equal to that proposed by Hu-Guo [5].
Using the definition of the hysteresis damping ratio in equation (8), the result can be presented in
terms of ε:

ε(cr) =
(3+2p)(1− c2

r )

2cr

(
3+2p
3−2p

+ cr

)−1

. (16)

The final step to complete the approximation is to substitute in the expression for p, equation (14),
and determine the constants α and β . The complete expression for ε(cr) follows below:

ε(cr) =
(3+2α(e−βcr − e−β ))(1− c2

r )

2cr

(
3+2α(e−βcr − e−β )

3−2α(e−βcr − e−β )
+ cr

)−1

. (17)

To compute the constants, equation (17) can be applied to the numerical ε(cr) solution to produce
a best fit. Figure 2 displays the best fit of equation (17) to the numerical solution. The constants
produced by the fit are α = 1.381 and β = 0.451.

Figure 2. Numerical and approximate solution to ε(cr) for 0.01 ≤ cr ≤ 1.0

It can be seen that the approximation does exceptionally well at mapping the numerical solution,
in both curvature and magnitude. The computed relative error between the two curves, over the
range 0.01 ≤ cr ≤ 1.0 (or 0 ≤ ε ≤ 100), is 0.062%. This fractional error confirms equation (17)’s
validity for use in the limit as cr → 0, as with all ranges of damping.

That equation (17) is presented in terms of ε instead of λ is a conscious choice. In this analysis,
ε is far more useful. All simulations in this section were done with the dimensionless model,
equation (9), as will be the case for section 4. It will be seen that working in terms of ε is not just
a matter of convenience, but an actual requirement for the theory developments that follow.

4 Stiffness as it relates to impact time
To allow for the highest practicality of the Hunt-Crossley model, it needs to be possible to de-
termine generally not just the model’s damping characteristics, as has been done, but its stiffness
characteristics as well. As is the case with λ , the best way to do this is through empirical relation.



Figure 3. Numerical solution to ∆τ(ε,n) for 0 ≤ ε ≤ 10 and 1 ≤ n ≤ 5

To create an empirical relationship for stiffness, it is first necessary to relate K to some measurable
experimental parameter, the same way λ is related to cr. To determine what the empirical param-
eter should be, it is easier to think about the stiffness in terms of the impact natural frequency, ωi,
rather than K. The reason for this is because, while it is not readily apparent what empirical pa-
rameter could directly relate to K, with natural frequency, its very units signify its relation to time.
The empirical parameter selected, therefore, is time. Specifically, it is the total time of impact, ∆t.

To generate an expression for ωi in terms of ∆t, it will be easier to use the dimensionless form of
Hunt-Crossley, equation (9), and translate into dimensional space at the end. This translation can
be done with the dimensional-dimensionless time relationship shown in equation (3). Writing the
relationship in a different form, the impact natural frequency can be expressed as

ωi =
∆τ

∆t
. (18)

This is to say that the natural frequency can be computed if one knows both the dimensional and
dimensionless impact times. The principal aim of this analysis, then, is to determine some variable
expression for ∆τ .

4.1 Dimensionless impact time
Characterization of ∆τ will be done through simulation of the dimensionless equation. Noting
that both ε and n control the behavior of its solutions, it can be posited that ∆τ will be a multi-
variable function: ∆τ(ε,n). This makes the process of representing it functionally a matter more
complicated than with single-variable phenomena.

The first step is to simulate its behavior. Figure 3 presents the numerical solution for ∆τ(ε,n). This
is the target surface that is sought to be functionally expressed. To generate such an expression, it is
most tractable to approach the solution in parts. First, it will be studied how ∆τ(ε,n) behaves when
n = 1. This simplifies the problem by a reduction to one dimension. Determining a single-variable
expression to approximate ∆τ(ε,1), this base expression can then be adjusted to accommodate
how it behaves with varying n, i.e., made multivariable. This will produce ∆τ(ε,n).

Beginning with n= 1, it can be noticed from Figure 3 that ∆τ(ε,1) begins with exponential growth
but assumes pure linear behavior past ε = 3. The base function, therefore, can take the form of a



Figure 4. (a) Numerical S(n) solution, (b) numerical Y (n) solution (undamped ∆τ)

coupled linear-exponential relationship. The general form of such a relationship follows as

∆τ(ε,1) = ae−bε + cε +d, (19)

where a, b, c, and d are numerical constants.

From here, it is necessary to understand what aspects of ∆τ(ε,1)’s behavior changes when n is
allowed to vary. Two key changes can be noted from Figure 3. The first is the intercept, or the
undamped impact time, and the second is the curves’ slopes. Both of these aspects of the ∆τ(ε,1)
curve change with increasing n. Incorporating these two factors into equation (19), a general form
for ∆τ(ε,n) is formulated:

∆τ(ε,n) = ae−bε +S(n)ε +Y (n). (20)

Here, S(n) is denoted as the slope function, and Y (n) is denoted as the intercept function. S(n)
replaces the constant c while Y (n) replaces the constant d. These adjustments allow for the ex-
pression to accommodate the discussed behavioral changes with increasing n.

It is from here necessary to determine suitable functions for both S(n) and Y (n) so that equation
(20) is analytically complete. To do so, the numerical solution for both functions can be plotted
and expressions can be made to approximate them. Figure 4 displays the numerical solutions.

Looking first at the numerical slope function, S(n), in Figure 4(a), its profile appears to be governed
by decaying exponential behavior, albeit inverted. This behavior can be encompassed analytically
by the following general expression:

S(n) = c−de− f n. (21)

Regarding the numerical intercept function, Y (n), shown in Figure 4(b), it can be seen that its
behavior is more nuanced. Encapsulating its behavior will require a combination of elementary
functions. Its behavior can be broken into two parts, that before n = 3 and that after. Before n = 3,
the profile behaves similarly to xe−x, while after n= 3, it behaves linearly, −x. Combining the two,
the form of the approximation is xe−x − x. Written generally, the approximate intercept function
follows below. The numerical constants here are g, h, i, j, and k. Note that all five are necessary
for accurate fitting.

Y (n) = (gn−h)e−in − jn+ k. (22)



With suitable approximations determined for S(n) and Y (n), they can be substituted into equation
(20). The expression with these substitutions follows as

∆τ(ε,n) = ae−bε +(c−de− f n)ε +(gn−h)e−in − jn+ k. (23)

Note that there are a total of ten numerical constants in this expression, while e is retained as
Euler’s Number. Like with ε(cr) in section 3, the expression in (23) can be fit to the numerical
solution to produce best-fitted constants.

Figure 5 shows the fit of equation (23) to the numerical solution. The constants produced are
a= 0.180, b= 0.880, c= 0.853, d = 1.018, f = 0.461, g= 1.434, h= 0.864, i= 0.771, j = 0.023,
and k = 2.695. The computed relative error between the two surfaces is 0.237%.

Figure 5. Numerical and approximate solution to ∆τ(ε,n) for 0 ≤ ε ≤ 10 and 1 ≤ n ≤ 5

4.2 Natural frequency and stiffness
It is from here that the natural frequency can be derived. The expression for dimensionless impact
time in (23), having been confirmed accurate, can be translated into dimensional space through
equation (18). This substitution results in the sought after expression for natural frequency as a
function of dimensional impact time:

ωi(ε,n,∆t) =
1
∆t

[
ae−bε +(c−de− f n)ε +(gn−h)e−in − jn+ k

]
. (24)

This ωi can be used in equation (10), in the acceleration form of Hunt-Crossley, for simulation.
If the standard form is desired to be used, however, one will need an expression explicitly for K.
This can be derived through equating the above expression for ωi with its analytical definition in
equation (6). Solving for K, the following is produced:

K =
m

δ̇0
n−1

(
1
∆t

[
ae−bε +(c−de− f n)ε +(gn−h)e−in − jn+ k

])n+1

. (25)

These are the final forms. Either expression will allow for the Hunt-Crossley model’s stiffness
input to be determined purely from experiment. This method is powerful in that it is modular, can
be used for impacts between objects of arbitrary nature. So long as one can measure accurately



both the coefficient of restitution and total time of impact, as well as the Hertzian exponent, ma-
terials of either linear or nonlinear character can be represented by the model. This removes the
requirement of an analytical expression for stiffness determination.

5 CONCLUSIONS
The aim of this work was to provide improved theory for the Hunt-Crossley contact force model
so that its use may be more widespread. For use in general applications, modular methods need
to be in place to determine accurately the model’s damping and stiffness parameters. Through
translation into dimensionless space, it was shown possible to characterize the model’s damping
and stiffness in terms of new parameters. The hysteresis damping ratio, ε , allows damping to
be characterized nondimensionally, while the impact natural frequency, ωi, allows stiffness to be
characterized with relation to time. These two parameters led to the derivation of a new form of
the Hunt-Crossley model, in units of acceleration rather than force, that incorporates ε and ωi as
inputs instead of λ and K.

Work followed to allow for accurate determination of the discussed model parameters. Building
off the work of the literature, a new relationship between λ /ε and the coefficient of restitution
was produced. Through additions to the velocity-deformation relationship, allowing for changes
in curvature, it was shown that a new λ /ε(cr) expression could be produced for high accuracy in
all ranges of coefficient of restitution, specifically as cr → 0.

For stiffness, entirely new methods were put forth to determine its value empirically. Recognizing
stiffness to be related to the total time of impact, ∆t, it was possible to generate a relationship
between ∆t and the impact natural frequency. Dimensionless study allowed for further insight,
that ωi is not purely a function of ∆t but of ε and n as well: ωi(ε,n,∆t). This expression allows for
first time determination of stiffness for general case impacts. Characterizing the stiffness in this
way, the Hunt-Crossley model can be used to simulate a much wider range of impact scenarios in
practice.
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