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ABSTRACT

This work presents an extension of the nonsmooth generalized α time integration
scheme applied to multi-impact collisions including Coulomb’s friction. The classi-
cal Newton impact law is used to extend the applicability of multiple impact problems
with friction in spherical bodies assuming instantaneous local impact events. The ge-
ometrical properties of the spheres are described by a rigid body formulation with
translational and rotational degrees of freedom. Finally, the robustness and the per-
formance of the proposed methodology is demonstrated by three numerical examples.
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1 INTRODUCTION
The characterization of mechanical systems with multiple impacts between spherical rigid bod-
ies under frictional contact is a challenging research topic that allows the simulation of different
kinds of problems such as the typical billiard break, the Newton’s cradle toy and the Bernoulli’s
problems, among others [1]. When a multibody system is subjected to impacts, two scenarios can
arise: (i) single impacts, when the bodies are in contact at a single point and the impact occurs
at this point, and (ii) multiple impacts, when there are several points in contact and the impact
occurs simultaneously in some of them [2].

From a general view, there are two main approaches for numerically solving impact problems.
The first approach assumes that the impact time duration is very small. This group can be even
subdivided into first-order and second-order models. The first-order models can be based on Dar-
boux [3] formulation where the normal impulse is adopted as integration variable instead of time.
Another alternative is by using the Poisson local impact law, which assumes a decomposition of
the impact process into a compression and an expansion phases and also involves a coefficient
of restitution [2]. Recently, Liu and Brogliato have extended the first-order formulation to study
granular chain problems [4]. On the other hand, the second-order models use some kind of spring-
dashpot models. The second approach describes the impact process as instantaneous by using the
classical Newton local impact law, which relates the pre-impact and the post-impact velocities by
a restitution coefficient. The adoption of the local Newton or Poisson laws for modelling multi-
ple impacts is a natural and convenient choice. However, additional complications appear in the
formulations when frictional effects are considered because a nonlinear friction law such as the
Coulomb’s law is needed.

In this work, we introduce a new methodology for the simulation of multiple impact collisions
with friction between spherical rigid bodies in the framework of the nonsmooth contact dynamics
and the nonlinear finite element method. The proposal is an extension of the frictionless multiple



impact algorithm based on the Newton’s impact law presented by Cosimo et al.[5] to the frictional
case. The time integrator scheme used to integrate the equations of motion is the new version of
the non-smooth generalised α integrator [6]. It is characterised by the solution of three decoupled
sub-problems to be solved at each time step, the so-called: smooth motion, position correction
and velocity correction sub-problems. The algorithm presented in this work to simulate multiple
impact problems with friction, is based on modifying the velocity correction active set in order to
define a sequence of impact problems on a vanishing time interval. Then, the active set of each
velocity-level sub-problem is redefined in the normal and in the tangential directions, in such a
way that closed contacts with zero pre-impact velocity are considered inactive.

The frictional contact element formulated by Cavalieri et al. [7] was extended to manage sliding,
rolling and drilling friction effects. We use it in the numerical examples section to simulate the
contact between a sphere and a rigid plane. Furthermore, a new formulation for frictional contact
between two spheres is presented. In this new element, similarly to the formulation [7], the contact
problem is solved using an augmented Lagrangian formulation [8] which was applied by Galvez et
al. [9] to dynamic problems with friction. The total motion is directly referred to an inertial frame
for the kinematic description of the bodies with large rotations and displacements, as proposed
by Géradin and Cardona [10]. Finally, three numerical examples are presented to validate and to
evaluate the performance of the method.

2 FRICTIONAL CONTACT PROBLEM
In order to describe the kinematics of two contacting bodies with friction effects, the gap distance
between the contact surfaces is usually split into a normal gN ∈ R and a tangential gT ∈ R2 com-
ponents with respect to a material orthonormal frame. The same procedure is performed with the
contact force ν which is decomposed into a normal νN ∈R and a tangential νT ∈R2 components.
Thus, the restrictions of gap, contact, stick or slip of the frictional contact problem at position level
are given by:

gN ≥ 0 νN ≥ 0, gNνN = 0;

∥gT∥ ≥ 0, ∥νT∥ ≤ µνN , ∥gT∥(∥νT∥−µνN) = 0 ∥νT∥ gT =−∥gT∥ νT
(1)

where µ is the friction coefficient. The first set of inequality equations of Eq.(1) represents the
Signorini contact conditions. It indicates if the bodies are in gap or in contact status. The second
set corresponds to the Coulomb friction law that can be either in stick or slip. The set of inequality
constraints in Eq.(1) are satisfied exactly by using the augmented Lagrangian formulation proposed
by Alart and Curnier [8]. The adopted form of the augmented Lagrangian function for the frictional
contact problem at position level of Eq.(1), in terms of the nodal coordinates vector q and ν, is
given by

L p(q,ν) =−kpgNνN +
pp

2
g2

N − dist2

2pp

[
ξN ,R+

]
− kpgT ·νT +

pp

2
∥gT∥2 − dist2

[
ξT ,CξN

]
2pp

(2)

where ξN = kpνN − ppgN and ξT = kpνT − ppgT are the augmented multipliers for the normal and
the tangential direction at position level, respectively; pp is a positive penalty parameter and kp is a
scaling factor for the Lagrange multipliers νN and νT . The numerical solution does not depend on
the value of these parameters; however, we found that to improve the convergence rate, the default
values should be chosen according to kp = pp = m̄, with m̄ a characteristic mass of the problem.
The function dist(z,C) is the distance between a point z ∈ Rn and the convex set C while the
cone CξN is the convex set defined by the extension of the friction cone C(kpνN + ppgN)≡C(ξN)
to the half-line R−(ξN), i.e., the set of negative values of the normal augmented multiplier ξN =
kpνN + ppgN , more details can be found in [11]. We remark that gT is the tangential component of
the incremental relative displacement between two points in contact during the considered period
of time (the integrator time step).



In a similar way, the frictional contact conditions at velocity level are written as follows:
◦gN ≥ 0, ΛN ≥ 0, ◦gNΛN = 0;

∥ ◦
gT∥ ≥ 0, ∥ΛT∥ ≤ µΛN , ∥ ◦

gT∥(∥ΛT∥−µΛN) = 0 ∥ΛT∥ ◦
gT =−∥ ◦

gT∥ΛT
(3)

where ΛN ∈R and ΛT ∈R2 are the normal and the tangential impulses in the normal and tangential
directions, respectively, with respect to an orthonormal material frame. The first inequality in
Eq. (3) indicates that when impacting, ◦gN = 0 and a velocity jump is produced (Newton’s impact
law in the normal direction); the second one is the non-traction condition (only compression is
allowed at impact) and the third one is the complementarity equation. Then, the terms ◦gN ∈R and
◦
gT ∈ R2 express the Newton impact’s law in the normal and tangential directions. They are given
by the following equations,

◦gN = gNq,n+1vn+1 + eNgNq,nvn (= 0) ◦
gT = gT q,n+1vn+1 + eTgT,q,nvn (= 0) (4)

Here, eN ∈ [0,1] and eT ∈ (−1,1) are the coefficients of restitution in the normal and tangential
directions, respectively, and gNq and gT q are the gradients of the normal and incremental tangential
displacements, respectively. The remark (= 0) on the right-hand-side of Eq.(4), indicates that the
corresponding equation is zero when convergence is achieved. The second set of restrictions of
Eq.(3) gives the impact equations in the tangential direction to consider friction effects. Then,
similarly to Eq.(2), the augmented Lagrangian which regularizes the frictional contact problem at
velocity level is given by

L v(v,Λ) =−kv
◦gNΛN +

pv

2
◦g2
N − dist2 [σN ,R+]

2pv
− kv

◦gggT ·ΛT +
pv

2
∥ ◦gggT∥2 − dist2 [σT ,CσN ]

2pv
(5)

where σN = kvΛN − pv
◦gN and σT = kvΛT − pv

◦gggT are the augmented multipliers at velocity level
in the normal and tangential directions, respectively and CσN is a section of radius µσN of the
augmented Coulomb friction cone expressed in terms of velocity variables. Then, pv is a positive
penalty parameter and kv is the scaling factor for the Lagrange multipliers ΛN and ΛT . Both pv

and kv are usually chosen with the same values as pp and kp, respectively.

The virtual variations of the augmented Lagrangians of Eqs.(2,5) give the internal force vectors,
and their linearisation yields the corresponding Hessian matrices, see [9, 7] for a detailed explana-
tion. Here, since the modification required to model multiple collisions with friction are performed
only at velocity level, we will focus on the velocity sub-problem. Thus, the virtual variation of
Eq.(5) gives the internal force vector at velocity level for the three contact scenarios: gap, stick
and slip, and is expressed:

δL v(Φ) = δΦTF v(Φ)→ F v(Φ) =




0

− k2
v

pv
ΛN

− k2
v

pv
ΛT

 σN < 0 Gap


−gT

NqσN −µσNg
T
T qτv

−kv
◦gN

kv
pv
(−kvΛT +µσNτv)

 ∥σT∥ ≥ µσN Slip


−gT

NqσN −gT
T qσT

−kv
◦gN

−kv
◦gggT

 ∥σT∥< µσN Stick

(6)

where Φ= [v ΛN ΛT ] is the generalized coordinates vector, v is the generalized velocities vector
and τv = σT/∥σT∥ is a unit vector that defines the tangential direction of the contact force at
velocity level.



3 SPHERE-SPHERE CONTACT MODEL WITH FRICTION
A new sphere-sphere contact element formulation with sliding friction is introduced in this section
(Fig.1). The model is developed for three dimensional movements. Each sphere is considered
as a point attached to a rigid body element that gives the mass and inertia properties. Then, the
kinematics is described by the coordinates (position, orientation) of a body in the space. The
element does not increase significantly the number of degrees of freedom of the global system of
equations and for this reason, the formulation is computationally efficient and relatively easy to
implement into a non linear finite element code. The model is able to capture when the spheres
are in contact, rotating or sliding over each other with a relative rotation angular velocity. The
kinematic movement is referred to an inertial frame defined by a set of orthogonal base vectors
X1, X2 and X3. The centre of the sphere A with radius rA and the centre of the sphere B with
radius rB are located at nodes A and B, respectively. The positions of these nodes at the current
time step are given by vectors xA,n+1 and xB,n+1 (Fig. 1).

A

B

X1

X2

X3

ΨA,incr

ΨB,incr

xA,n+1

xB,n+1

nn+1

t2

rB

rA
P

Figure 1. General configuration for the three-dimensional sphere-sphere contact model.

The description of motion of the spheres is completed by giving the incremental rotation vector at
nodes A and B from time step n to time step n+1, which is represented by the vectors ΨA,incr ∈R3

and ΨB,incr ∈ R3 as follows

exp(Ψ̃A,incr) =RT
A,nRA,n+1 exp(Ψ̃B,incr) =RT

B,nRB,n+1

where the exponential map exp(Ψ̃) is used. Here, Ψincr = vect(Ψ̃incr) is the so-called Cartesian
rotation vector which has the direction of the rotation axis and a length equal to the amplitude
of the incremental rotation [10] (the operator ã : R3 → R3 ⊗R3 returns a 3× 3 skew-symmetric
matrix such that a×b= ãb ∀ a,b ∈ R3).

In order to calculate the gap vector g = [gN gT
T ]

T of this element, an orthonormal material frame at
the contact point P is defined (Fig. 1). It is given by a unit normal vector n defined from vectors
xA and xB, and two tangential vectors t1 and t2 perpendicular to n,

n=
xB −xA

∥ xB −xA ∥ t1 =
e×n

∥e×n∥ t2 = n× t1 (7)

where e is an arbitrary vector not collinear with n. According to Fig. 1, the generalized gap vector
is defined as gN

gT 1
gT 2

=

 ∥xA,n+1 −xB,n+1∥− (rA + rB)
t2,n · (ΨA,incrrA +ΨB,incrrB)− t1,n · [(xA,n+1 −xB,n+1)− (xA,n −xB,n)]
−t1,n · (ΨA,incrrA +ΨB,incrrB)− t2,n · [(xA,n+1 −xB,n+1)+(xA,n −xB,n)]

 (8)

where the first component corresponds to the normal gap gN while the two remaining components
represent the incremental tangential movement gT 1 and gT 2. From Eq.(8), tα,n ·[(ΨA,incrrA +ΨB,incrrB)]



with α = 1,2 is related to the relative rotating movement between the spheres. Meanwhile tα,n ·
[(xA,n+1 −xA,n)+(xB,n+1 −xB,n)] is the incremental displacement in the tangential directions.
Note that in Eq.(8), the tangential vectors tα are evaluated at previous time step in order to facil-
itate the Hessian matrix linearization. This simplification does not impose a severe restriction to
the numerical solutions as we will demonstrate in the numerical examples. To compute the inter-
nal force vector at velocity level given in Eq.(6), the Newton impact’s law is required. For this
element, it takes the following form,

 ◦gN
◦gT 1
◦gT 2

=


nn+1 · (vA,n+1 −vB,n+1)+ eNnn · (vA,n −vB,n)

t2,n · (ωA,n+1rA +ωB,n+1rB)− t1,n · (vA,n+1 −vB,n+1) +
+ eT [t2,n · (ωA,nrA +ωB,nrB)− t1,n · (vA,n −vB,n)]

−t1,n · (ωA,n+1rA +ωB,n+1rB)− t2,n · (vA,n+1 −vB,n+1) +
+ eT [−t1,n · (ωA,nrA +ωB,nrB)− t2,n · (vA,n −vB,n)]

 (9)

where v and ω are the linear and angular velocities, respectively. By using the gap definition,
Eq.(8), and the Newton’s impact law, Eq.(9), the expressions to evaluate the internal force vectors
and the Hessian matrices in the context of nonsmooth generalized time integrator scheme are
obtained. The elementary Hessian matrices and the internal force vectors, both at position and
velocity levels, contribute to the global tangent matrices and to the generalized internal forces
vectors by a standard assembly procedure.

4 MULTIPLE IMPACTS COLLISION
This section presents the formulation of the algorithm for frictional multiple impacts collisions,
which is based on the recent work presented by Cosimo et al [12]. Unlike that paper, here the
friction effects between the contacting bodies are considered. In Cosimo et al [12], the authors
proposed a modification to the active set criterion at velocity level in order to use the classical
Newton impact’s law. By following this methodology, the new multiple impacts active set in the
context of the sphere-sphere frictional contact element is given by the expression,

G ∗ = U ∪{ j ∈ A : ◦g∗ j
NqṼ

− < tolv and σ
∗ j ≥ 0} (10)

where
Ṽ − =

[
Ṽ −,T

A Ṽ −,T
B Ω̃−,T

A Ω̃−,T
B

]T
(11)

is the update vector of the pre-impact velocity of ṽ for the next iterations, thus Ṽ − = v. Note
that the symbol˜does not represent the skew symmetric matrix. The choice of the tolerance tolv
is discussed in detail in [12]. Then, the new Newton impact’s law in the normal an tangential
directions defined for every j ∈ C is defined next

◦g∗ j
N = g j

Nq,n+1vn+1 + e j
Ng j

Nq,nV
− ◦ggg∗ j

T = g j
Tq,n+1vn+1 + e j

Tg
j
Tq,nV

− (12)

where
V − =

[
V −,T

A V −,T
B Ω−,T

A Ω−,T
B

]T
(13)

is the update vector of the pre-impact velocity of vn for the next iterations, thus V − = vn+Wn+1.
Finally, the modified augmented multiplier at velocity level is defined as,σ∗

N,n+1
σ∗

T 1,n+1
σ∗

T 2,n+1

=

 kvΛN − pv
◦g∗N

kvΛT 1 − pv
◦g∗T 1

kvΛT 2 − pv
◦g∗T 2

 (14)

The resulting impulses have to be accumulated, taking into account the sequence of impacts at
each step. Therefore, the accumulated impulses in the normal and tangential directions are given



by the following equations

PN =
i−1

∑
j

g
G ∗

j ,T
Nq Λ

G ∗
j

N PT =
i−1

∑
j
g

G ∗
j ,T

Tq Λ
G ∗

j
T (15)

where the index i is used to denote the impact problem from the sequence of impacts at the current
step. Finally, the internal force vector yields

F v∗,G ∗
(Φ) =
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v
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N
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v
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T q σG ∗
T −PN −PT
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◦gG ∗
N

−kv
◦gggG ∗

T

 ∥σ∗
T∥< µσ

∗
N Stick

(16)

5 NUMERICAL EXAMPLES
Three numerical examples are presented to show the accuracy and robustness of the proposed
methodology. The contact element algorithms developed in this work has been implemented in
the finite element research code Oofelie [13].

5.1 Single Collision Example
This example is proposed to simulate the case of frictional impact between two spheres. The
numerical solution is validated against the 30◦ rule, which is well known in the analysis of billiard
balls collisions [14]. The 30◦ rule states that if a ball in rolling movement (the cue ball) impacts
between 1/4-ball hit (49◦ cut) and 3/4-ball hit (14◦ cut) with an static ball, it will deflect by almost
30◦ from its original direction after hitting the static ball. The exact cue ball deflection angle θc as
a function of the cut angle φ is given by the following equation,

θc = tan−1

(
sin(φ)cos(φ)
sin2(φ)+ 2

5

)
(17)

where φ = sin−1(1− f ) is calculated from the hit ball fraction factor f ∈ [0,1] between the balls.
The comparison of this rule with the experimental solutions can be found in [14, 15] and in many
videos available in websites. For the simulations, we selected the reference geometrical and phys-
ical properties values given by the classical pool/billiard book of Alciatore [14]. The diameter of
the balls is 5.71 cm, the mass 0.17 kg, the friction coefficients between the balls and between the
balls and the cloth are 0.06 and 0.2, respectively. The normal restitution coefficient value between
the balls is 0.93 and it is 1 between the balls and the cloth. The tangential restitution coefficient
is 0 for all contact points and the acceleration of gravity is g = 9.8 m/s2. Then, an initial velocity
of 2 m/s with null angular velocity was imposed to the cue ball. The numerical solution is com-
puted with a spectral radius of ρ∞ = 0.8 and a time step of 1×10−3 s. The values of the Newton
tolerance for convergence is equal to 1×10−5. Computations with nine different hit ball fraction
factors f were proposed to validate the algorithm: [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875,
1]. Figure 2 shows that the analytic and the numerical solutions are in agreement. For the adopted
tolerances, a maximum number of iterations per time-step of 1, 4 and 2 and a mean number of 1
iteration per time-step for each sub-problem were reported.
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Figure 2. The 30 ◦rule. Numerical and analytical solution comparison.

5.2 The effect of friction on the throw angle
Throw effects are produced by the friction forces imparted from a moving ball sliding or rotating
against a stationary ball. The cue ball (CB) has a spinning angular velocity ωCB and an initial linear
shot velocity v−. Then, the CB impacts with the objective ball (OB) and the latter is deflected with
a throw angle θthrow and a post-impact velocity v+. Figure 3 shows a schematic drawing of the
kinematics of impact between the CB and the OB. From the work of Alciatore [14], the throw

Y
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CB
v− ΛN

v+

ΛT

ωCB

θthrow

ωOB

r

r

Figure 3. Throw angle effect in two spherical bodies.

angle depends on the speed of the shot v, the cut angle φ , the amount and direction of CB spin
velocity ωCB, the friction coefficient µ and the radius R of the balls. The analytical equation to
calculate θthrow is given by

θthrow = tan−1

min
[

µv− cosφ

vrel
,1/7

]
(v− sinφ −RωzCB)

v− cosφ

 (18)

where vrel =
√
(v− sinφ −RωzCB)2 +(RωxCB cosφ)2 is the initial relative velocity magnitude at

the point of impact. Several experiments performed by Jewett [16] and Alciatore [17, 18] have
verified the validity of Eq.(18). For the numerical experiment, typical values for billiard balls are
taken from [14]. Both the CB and the OB have a radius of R = 0.028575 m, a mass of m = 0.17
kg and are subjected to a gravity acceleration of g = 9.8 m/s2. The friction between the balls and
the plane is neglected in order to consider in the simulations only the spin movement which is
transferred from the CB to the OB. Then, different angular velocities for the CB were proposed:
ωzCB = [−58.59, −46.89, −35.17, −23.44, −11.72] rad/s together with the following friction
coefficients between the spheres µ = [0.039, 0.048, 0.059 0.074, 0.093] corresponding to each
ωzCB. The velocity of the CB was v− = 1.341 m/s in the x direction. The time step used in the
simulations was 1×10−4 s, and the total time for the simulation was 0.5 s. The value of tolerance



for checking the Newton solver convergence was equal to 1×10−5 and the spectral ratio selected
is ρ∞ = 0.8. Figure 4 shows a comparison between the throw angle θthrow as a function of Rωz/v−
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Figure 4. Throw angle for different friction coefficients.

calculated with Eq.(18) and the numerical solution computed in this work. As Fig.4 shows, both
solutions are in a good agreement. For this example, the maximum number of iterations per time-
step was 1, 3 and 3 for the smooth, position and velocity sub-problems, respectively. The mean
number of iterations was 1 per time-step for each sub-problem.

5.3 Pool balls interaction
This numerical example was initially proposed by Gismeros et al. [19]. It consists in a typical
billiard break which allows to study the capacity of the algorithm to solve problems with multiple
impacts with and without friction. According to [19], a white ball labeled 2 with a speed of
vx = 10.792 m/s hits three balls labeled 3, 4 and 5 that are in contact between them and at rest (see
Fig. 5-a). The four balls have a radius R = 0.028575 m, a weight mg = 1.666 N and an inertia
I = 0.000055 kg m2. The table has a length of 2.54 m and a width of 1.27 m [20]. The values of
the friction coefficient µ and the normal restitution coefficient eN are 0.2 and 0, respectively, for
the contact between the spheres and the table. The coefficients for the contact between spheres
are µ = 0.06 and eN = 0.93 while for the contact between the spheres and the edges of the table,
µ = 0 and eN = 0.85. In all contact points a tangential restitution coefficient eT = 0 is imposed.

Two cases are analyzed: in the first one, the rolling resistance between the spheres and the plane
is neglected, while in the second one a rolling resistance radius ρ = 0.005 m is adopted. The total
simulation time was 3 s with a time step of 1×10−3 s. In the first case, the cue ball starts with a
velocity of 10.729 m/s and null rolling velocity, and impacts the balls at a slightly lower velocity
due to the sliding friction between the ball and the plane, see Fig. 5-b. After multiple impacts, ball
3 moves forward with a low velocity. As it can be seen, once the balls are in pure rolling, their
velocity remains constant (Fig. 5-b). The second case is similar to the first; however, the balls
reach the rest condition due to the action of the rolling resistance, see Fig. 5-c.

The results show that the proposed methodology does not present any penetration between bod-
ies in contact, contrary to what happened using the methodology given by Gismeros et al. [19]
based on the penalty approach. Furthermore, the computing time was reduced from 25000 s, as
demanded in the case of Gismeros et al to only 40 s.

6 CONCLUSIONS
A new methodology for handling simultaneous multiple impacts with friction effects between
spherical rigid bodies was presented. The algorithm is based on the frictionless proposal by
Cosimo et al. [5] in which the Newton impact law is sequentially applied by assuming instanta-
neous local impact times. Then, a detailed kinematic formulation of a spherical-spherical frictional
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Figure 5. Numerical example: billard break

contact element by using large rotations and absolute coordinates is presented. The studied exam-
ples demonstrated that the proposed methodology keeps a low computational cost compared with
the classical penalty approaches. Furthermore, the strategy does not require any intervention of
the user or any topological analysis for defining the sequence for processing the multiple impacts.

ACKNOWLEDGEMENTS
This work received financial support from Consejo Nacional de Investigaciones Científicas y
Técnicas (CONICET) PIP11220200101688CO and Universidad Tecnológica Nacional PID-UTN
AMECAFE0008102TC which are gratefully acknowledged.

REFERENCES
[1] Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. Nu-

merical algorithm and simulation results. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 465(2101) (2009) 1–23

[2] Nguyen, N.S., Brogliato, B.: Multiple impacts in dissipative granular chains. Volume 72.
Springer Science & Business Media (2013)

[3] Darboux, G.: Étude géométrique sur les percussions et le choc des corps. Bulletin des
Sciences Mathématiques et Astronomiques 4(1) (1880) 126–160

[4] Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I.
Theoretical framework. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 464(2100) (2008) 3193–3211

[5] Cosimo, A., Cavalieri, F.J., Cardona, A., Brüls, O.: On the adaptation of local impact laws
for multiple impact problems. Nonlinear Dynamics 102(4) (2020) 1997–2016



[6] Cosimo, A., Galvez, J., Cavalieri, F.J., Cardona, A., Brüls, O.: A robust nonsmooth
generalized-α scheme for flexible systems with impacts. Multibody System Dynamics 48(2)
(2020) 127–149

[7] Cavalieri, F.J., Cosimo, A., Sanchez, E., Brüls, O., Cardona, A.: Simulation of sliding fric-
tion of spherical rigid bodies subject to multiple impact collisions. In Pucheta, M., Cardona,
A., Preidikman, S., Hecker, R., eds.: Multibody Mechatronic Systems, Cham, Springer In-
ternational Publishing (2021) 151–158

[8] Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton
like solution methods. Comput. Methods Appl. Mech. Eng. 92(3) (1991) 353–375

[9] Galvez, J., Cavalieri, F.J., Cosimo, A., Brüls, O., Cardona, A.: A nonsmooth frictional
contact formulation for multibody system dynamics. Int. J. Numer. Methods Eng. 121(16)
(2020) 3584–3609

[10] Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach.
Wiley (2001)

[11] Leine, R.I., van de Wouw, N., eds.: Stability and Convergence of Mechanical Systems with
Unilateral Constraints. Springer Berlin Heidelberg (2008)

[12] Cosimo, A., Cavalieri, F.J., Cardona, A., Brüls, O.: On the adaptation of local impact laws
for multiple impact problems. Nonlinear Dynamics 102(4) (2020) 1997–2016

[13] Cardona, A., Klapka, I., Géradin, M.: Design of a new finite element programming environ-
ment. Engineering Computations 11 (1994) 365–381

[14] Alciatore, D.: The Illustrated Principles of Pool and Billiards. First edn. Sterling (2017)

[15] Wallace, R., Schroeder, M.: Analysis of billiard ball collisions in two dimensions. American
Journal of Physics 56(9) (1988)

[16] Jewett, B.: Seeking truth of beliefs. Technical report, Tech Talk, Billiards Digest (1995)

[17] Alciatore, D.: Throw - Part II: follow and draw effects, Dr. Dave’s illustrated principles.
Billiards Digest 29(10) (2006)

[18] Alciatore, D.: Throw - Part III: follow and draw effects, Dr. Dave’s illustrated principles.
Billiards Digest 29(11) (2006)

[19] Gismeros Moreno, R., Corral Abad, E., Meneses Alonso, J., Gómez García, M.J., Caste-
jón Sisamón, C.: Modelling multiple-simultaneous impact problems with a nonlinear smooth
approach: pool/billiard application. Nonlinear Dynamics 107(3) (2022) 1859–1886

[20] Alciatore, D.G.: The illustrated principles of pool and billiards. Dr. Dave Billiards Resources
(2004)


