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ABSTRACT

For non-convex trajectory optimization, it is rarely possible to know if the optimal so-
lution found using gradient descent corresponds to the global optimum. While search-
ing for the global minimum, it is possible to use a multi-start approach by randomly
initializing the problem. The initial guesses generated with this method might be far
from any optimum. Since gradient descent methods are affected by the initial guess
provided, this random initialization might impair the convergence. This study pro-
posed a two-step optimization procedure aiming to find more optimal solutions to
optimal control problems. First, the problem is modified to relax certain constraints
by replacing them with a penalty term; this problem is solved with random initializa-
tion. This first step enables the generation of an initial guess closer to an optimum
which is then used to initialize and solve the original fully constrained problem. This
method was applied to a multiple shooting optimal control problem aiming to invert
a pendulum without hitting several obstacles. The obstacle avoidance or continuity
conditions were expressed as penalties when applying the two-step optimization pro-
cedure. The proposed method outperformed a randomly initialized multi-start regard-
ing convergence rate, optimal cost, and computational time. Expressing the obstacle
avoidance condition as a penalty reduced the computational time by 67%. Expressing
the continuity or obstacle avoidance conditions as a penalty allowed discovering up
to 3 better solutions (lower cost). It also increased the rate of efficient solutions found
by 24% and 70%, respectively. Researchers interested in solving constrained optimal
control problems to find innovative trajectories could benefit from using the two-step
optimization procedure proposed in this study.

Keywords: Optimal control, Initial guess, Interior point method, Underconstrained
optimization, Multi-start.

1 INTRODUCTION
Optimal control theory has been used by researchers from various fields, from aeronautics to
biomechanics [1, 2, 3, 4]. This numerical method minimizes optimality criteria (i.e., cost func-
tion) while complying with context-specific constraints. It is usually performed with a gradient
descent method to find a local minimum [5]. However, when applying this method to non-convex
problems, it is unknown if the local optimum found corresponds to the global one. Hence, a multi-
start approach that solves the problem multiple times with different initial guesses is generally
recommended as it increases the chance of finding a more global optimum [6, 7]. This multi-start
approach is usually performed through a random initialization of the variables. However, the low
quality of the random initial guess might affect the optimal control problem (OCP) convergence.

Finding fast optimization algorithms with a high convergence rate for non-convex problems is an
open research topic. While the perfect optimization algorithm does not exist, some are better suited



for certain types of OCP problems. When a good initial guess cannot be acquired experimentally
or predicted by the researchers, the interior point method (IPM) is usually preferred due to its high
convergence rate and its robustness to the initialization [8]. However, IPM might be unable to
find minima hidden in highly non-convex constrained domains. Indeed, if the non-convex set of
constraints creates cavities, IPM cannot jump over the constraints to reach another portion of the
feasible domain (Fig. 6, in Appendix 6.1). It would be advantageous to benefit from the IPM’s high
convergence rate while getting around its drawbacks. Starting the optimization at points beneath
the constraint barriers by relaxing the constraints might achieve the desired goal.

In the last decades, several numerical transcriptions have arisen like parametric optimization [9],
temporal finite elements [10], direct single shooting [11], direct multiple shooting (DMS) [12],
direct collocation [13], differential dynamic programming [14], and discrete mechanics and opti-
mal control for constrained systems [15]. Since implementing these transcriptions is not trivial,
researchers usually choose one implementation that fits their needs better. The focus of this article
is not to compare or improve these implementations, but rather to present an innovative problem
initialization method. Indeed, it has been shown for direct single shooting that generating initial
guesses closer to an optimum can enlarge the chances of finding an appropriate optimal solution
[16]. In the present paper, the DMS implementation was chosen, but the improvements brought
by the suggested initialization method are not specific to the chosen transcription method.

Implementing a DMS problem involves discretizing the continuous state (x) and control (u) vari-
ables into vectors of discrete variables [x0,x1, ...,xNi+1] and [u0,u1, ...,uNi ]. These variable vectors
enable the discretization of the problem into sub-problems which are then solved independently
[17]. To ensure that the state trajectories are continuous between the sub-problems, a continuity
condition constrains the states at the end of the ith shooting node to be equal to the states at the be-
ginning of the (i+1)th sub-problem (Fig. 1). Note that, in the DMS transcription, the states at the
end of the sub-intervals xi,end are estimated through numerical integration. Consequently, states at
the end of the sub-intervals depend on the states and controls at the beginning of the sub-interval.

xi+1,start −xi,end(xi,start , ui, T ) = 0 (1)

Figure 1: DMS implementation of the continuity
constraint (red), where i is the number of the sub-
problem ranging from 0 to Ni and x the state vector.

Subdividing the problem improves numerical stability and computational efficiency [17]. Where
direct single shooting transcription integrates the trajectory over its whole duration, DMS tran-
scription only integrates over small intervals of the trajectory at a time. Given that the interval
discretization is fine enough, this strategy prevents the integration from diverging largely when the
controls are far from their optimal values.

As suggested in [18], the inter-shooting interval continuity condition could be softened by trans-
forming the constraints into a penalty of the following form:

Ni−1

∑
i=1

Nk

∑
k=1

(xk
i+1,start − xk

i,end(xi,start , ui, T ))2, (2)

with k the number of the state ranging from 0 to Nk. Formulating the continuity condition as



a penalty term in the cost function has the advantage of simplifying the resolution by removing
constraints. However, for non-convex problems, it does not guarantee the continuity of the opti-
mal solution, possibly resulting in dynamically inconsistent trajectories. This idea of simplifying
the OCP by transforming a constraint into a penalty objective can also be applied to other types
of constraints. It would be interesting to take advantage of the computational benefits from this
underconstrained formulation while ensuring that the dynamics of the system and the task require-
ments are respected.

The objective of this study was to present a method generating initial guesses which are spread out
over the variable domain but positioned close to a local minimum. Such a method would enlarge
the chance of finding the global optimum while being independent of the researcher’s insights
on the problem. The method proposed is composed, first of an underconstrained optimization
randomly initialized, followed by a fully constrained optimization initialized with the result from
the first optimization. We hypothesized that this method would allow finding a variety of relevant
local minima. The proposed method was compared with a usual multi-start approach regarding
convergence rate, optimal cost, and computational time. A secondary objective was to assess the
effect of the penalty weight and the maximum number of iterations during the first optimization
on the optimal solutions.

2 METHODS
2.1 Workflow
The workflow is composed of the following stages:

Random initialization – A random initial guess is generated for the states and controls within
their bounded domains. This variety of initial guesses independent of the researcher’s knowledge
of the problem increases the chance of finding various local minima.

First optimization – Some constraints of the original OCP are softened by replacing them with
weighted penalties included in the cost function. This underconstrained OCP is easier to solve and
less restrained by the IPM constraint barriers. The solution found might not be feasible. Still, due
to the gradient descent, this solution is likely closer to an optimum and to respecting the constraints
than the random initialization.

Second optimization – The solution from the first optimization step is provided as the initial
guess for the fully constrained OCP.

This workflow is performed in a multi-start approach. As many random initial guesses as judged
necessary are generated to create different optimal solutions.

2.2 Application to an OCP
The two-step optimization workflow was applied to a planar DMS trajectory optimization imple-
mented in Bioptim [19]. The OCP consisted of inverting a rigid pendulum mounted on a cart
without hitting obstacles along the trajectory (Fig. 2). The cart could translate on a rail, and the
rigid pendulum could passively rotate without friction. The pendulum started hanging still below
the cart and should end with a rotation of 180◦ above the cart. Horizontal forces were applied to
the cart to invert the pendulum. The objective of the OCP was to minimize the horizontal forces
and the duration of the movement. One point of the pendulum was constrained to avoid collision
with four obstacles, namely spheres.

The four states (x) of the problem were the cart translation and the pendulum rotation (positions
and velocities) (Tab. 1). The control (u) was the horizontal force applied to the cart. The problem
was discretized into 500 shooting intervals (Ni = 500). Each shooting interval was integrated using
five steps of a fourth-order Runge-Kuta method.



Figure 2: Illustration of the OCP. The pendulum (green) starts hanging below the cart (black). The
cart moves on the rail (black line) until the pendulum is upside down. The point on the pendulum
labeled P (black dot) cannot get through the spherical obstacles labeled Si (red). The pendulum
has a mass of 1 kg, and the radius of the spheres is 0.35 m.

Table 1: Bounds on the variables of the OCP

First node Middle nodes Last node

x0 Translation of the cart [m] 0 [−2,2] 0
x1 Rotation of the pendulum [rad] 0 [−π,π] π

x2 Velocity of the cart [m/s] 0 [−10π,10π] [−10π,10π]
x3 Velocity of the pendulum [rad/s] 0 [−10π,10π] [−10π,10π]
u0 Force on the cart [N] [−300,300] [−300,300] NA
T Final time of the simulation [s] NA NA [0,10]

NA: not applicable since the time parameter refers to the total duration of the movement,
and there is no control applied to the last node of the simulation.

2.3 Implementations comparison
To assess the benefits of the two-step optimization workflow, the OCP was initialized 100 times
and solved with three different implementations:

i DMS continuity and sphere avoidance conditions included in the problem as constraints
(Constrained).

ii DMS continuity condition (penalized continuity) included in the problem as a penalty term
during the first optimization step.

iii Sphere avoidance condition (penalized obstacles) included in the problem as a penalty term
during the first optimization step.

For ii and iii, the weight of the penalty term and the maximum number of iterations in the first
optimization step were varied in line with our secondary objective (Tab. 2).

Table 2: Weight of penalty terms (Eq. 3) in the cost function and maximum iterations for the first
optimization step. Each combination of parameters was tested

Maximum iterations Continuity penalty weight (ω3) Obstacles penalty weight (ω4)

Constrained NA constrained constrained
Penalized continuity 100,1000,10000 10000,100000,1000000 constrained
Penalized obstacles 100,1000,10000 constrained 10000,100000,1000000

2.4 OCP transcription
The mathematical transcription of the OCP was:
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i+1,start − xk
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Pi(xi,start)−S j ≥ r (3c)

x ∈X ,u ∈U ,T ∈T (3d)

where r was the spheres’ radius, Pi was the position of the point on the pendulum at the ith

node, S j was the jth sphere’s center position ωi were the weightings (ω1 = 100, ω2 = 1, ω3 ∈
{10000,100000,1000000} and ω4 ∈ {1000,100000,10000000}), and X , U T were the decision
variable domains (see Tab. 1 and Tab. 2 for numerical values). The first two objective terms (i.e.,
minimizing the movement duration and the horizontal forces applied on the cart) were included
in all implementations of the OCP. Their sum was used to compare the cost between implementa-
tions. The continuity term was included only to the penalized continuity OCP, while, for the other
two OCPs, it was enforced by the continuity condition constraints (Eq. 3b). The sphere avoidance
term was included only for the penalized obstacles OCP, while, for the other two OCPs, it was
enforced by obstacle avoidance constraints (Eq. 3c). The tolerance on all constraints was set to
10−6 when solving the nonlinear program with IPOPT [20].

2.5 Optimal solutions analysis
Each optimized trajectory was reintegrated to measure the position of the point on the pendulum
at 5000 points (500 shooting nodes x 10 sub-discretization) equally distributed in time. The dis-
tance between each point position and the spheres’ surfaces was measured to obtain the spheres’
penetration using the following equation:

Ni×10+1

∑
i=0

4

∑
j=1

∣∣∣∣∣
{
‖Pi(xi,start)−S j‖− r, if negative,

0, otherwise

∣∣∣∣∣ , (4)

Solutions without DMS continuity condition violation and no penetration of the spheres were
qualified as admissible solutions.

The convergence rate, optimal cost, computational time, and maximum sphere penetration for all
solutions of the three implementations were reported. The most optimal solutions, referred to as
recommended solutions, were further analyzed.

3 RESULTS
All implementations found optimal solutions (Fig. 3). The convergence rate of the constrained
implementation was 93.0%. The convergence rate was 95.1% and 98.9% after the second opti-
mization step of the penalized continuity and penalized obstacles implementations, respectively
(Fig. 4 a.). The mean convergence time was 93.65±81.39 s for the constrained implementation.
The mean combined convergence time for both optimization steps were 148.94± 342.55 s and
30.79± 72.95 s for the penalized continuity and penalized obstacles implementations, respec-
tively. Solutions with the same kinematics and cost were grouped into clusters to facilitate their



analysis. The optimal solutions belonging to the four most optimal clusters of solutions found
were considered as recommended solutions (Fig. 5 and animation videos in supplementary mate-
rial). These recommended solutions were at least as optimal as the best solution provided by the
constrained implementation.

Figure 3: Cost (x-axis), computational time (y-axis) of the two-step optimization workflow, and
maximum spheres’ penetration (color gradient) for the constrained (left), penalized continuity
(middle) and penalized obstacles (right) implementations. Means and standard deviations are
presented with error bars. The dashed vertical line indicates the threshold for solutions considered
as recommended. Only solutions that reached convergence are presented.

Figure 4: Proportion of a) OCPs that converged, b) solutions in the recommended clusters, and c)
admissible solutions for the three OCP implementations.

The constrained implementation only found solutions in cluster #4, i.e., the worst cluster. The pe-
nalized continuity implementation found solutions in the clusters #1, #3, and #4 . The penalized
obstacles implementation found solutions in all four clusters. Out of the solutions that converged,
recommended solutions were found 19.4%, 43.7% and 89.4% of the time, for constrained, pe-
nalized continuity and penalized obstacles implementations, respectively (Fig. 4 b.). Out of the
solutions that converged, 38.7%, 72.2% and 99.6% were admissible solutions for constrained,
penalized continuity and penalized obstacles implementations, respectively (Fig. 4 c.).

The most optimal solutions were found with the shortest computational time with weight=1000,
maximum iteration number=[1000, 10000] for penalized continuity and weight=100000, maxi-
mum iteration number=[1000, 10000] for penalized obstacles implementations (Fig. 8 and 9 in
Appendix 6.3).



Figure 5: Trajectories of the pendulum during its inversion for the four clusters of recommended
solutions. The cost associated with each cluster is presented in the legend. The red circles represent
the obstacles, and the black dot is the initial position of the pendulum. A section of the trajectory
is enlarged on the right-hand side to show how the pendulum got around the spherical obstacles.
The shooting nodes where the constraints are applied are presented as dots along the trajectories.

4 DISCUSSION
A two-step optimization algorithm was presented and assessed by optimizing the trajectory of a
rigid pendulum avoiding obstacles. The algorithm consists in solving an underconstrained version
of the OCP, then warm-starting the fully constrained OCP with this solution as the initial guess.
Our two-step optimization method led to more optimal solutions and a larger proportion of rec-
ommended solutions. Despite the two optimizations needed, our method did not require longer
computational time; it was even faster for the penalized obstacles implementation than the usual
random initialization.

4.1 Exploring relevant local minima
Trajectory optimization is often used to generate trajectories without a priori knowledge of which
strategy should be used. In this context, the choice of the initial guess is important because it
may impact the optimal strategies found. Indeed, when using gradient descent methods, if the
initial guess is chosen too close to one feasible solution, the optimization will always converge
to this solution ignoring more optimal strategies. On the other hand, if the initial guess is chosen
too far from any feasible solution, it might impair convergence. The workflow presented here
has shown to be an excellent compromise to generate a variety of initial guesses close enough to
different local optima. The proposed workflow slightly increased the convergence rate, but more
importantly, it has resulted in four times more recommended solutions than the usual multi-start
method.

4.2 Simplifying constrained OCP
In most OCPs, continuity and path constraints are necessary to generate relevant trajectories that
respect the dynamics and satisfy the task requirements. The optimization problem resolution is
complexified when constraints are included. Computational tricks were suggested to work around
this limitation. Some implementations involve expressing the constraints as penalty terms in the
cost function allowing to solve an unconstrained OCP [21]. The penalty weightings can be modi-
fied iteratively to pressure the solutions to approach a feasible optimal solution [22, 23]. However,
even with these improvements, implementations replacing constraints with penalties still do not
guarantee feasibility for non-convex problems. Others suggested modifying the descent direction
to exclude the constrained regions from the search path [24]. Modifying the descent method re-



moves the need for constraints while ensuring the optimal solution is in the constrained domain.
Still, like IPM, it might disadvantage local minima which are hidden in non-linear constraint cav-
ities. Recently, [25] modified the descent direction by considering the normalized gradient of the
constraints; unfortunately, it does not apply to equality constraints. The warm-starting strategy
proposed in this study was a good compromise as it simplifies the resolutions of the OCP, enables
the exploration of hidden local minima, and provides solutions respecting the constraints after the
second optimization step.

4.3 Non-penetration constraints
Constraints commonly used in robotics OCP aim to avoid collisions by refraining sections of the
robot to access specified regions of the environment [26]. It is a usual practice to slightly overes-
timate the forbidden regions as a security precaution. It ensures that objects in the environment
are entirely covered by the constraints. This overestimation is necessary in the case of DMS OCP
since the constraints are usually applied at the shooting nodes only, meaning that the mathemat-
ical constraints of the problem might be transgressed between the nodes. With a fine temporal
discretization and a small overestimation of the penetration constraints, it is possible to assume
that the constrained regions are not accessible, thus preventing collisions. To measure the pene-
tration allowed by our implementation of the problem, the maximum penetration distance of the
pendulum was measured at 10 sub-interval for each DMS interval. We found that most trajectories
(including all recommended solutions) did not penetrate the forbidden spherical obstacles. The so-
lutions penetrating the spheres generally had a higher cost. Their strategy consisted in extending
the duration to spread apart the shooting nodes and to use large forces (large cost) to numeri-
cally jump over the obstacles (Fig. 11 in Appendix 6.5). Due to the fine time discretization (500
nodes) and the bounds on the controls and velocities, this unadmissible strategy was impossible
with a shorter duration. Since the penalized obstacles implementation had the greatest rate of
recommended solutions found, it was not surprising that it also had the greatest rate of admissible
solutions.

4.4 Effect of the parameters on the optimal solutions
Finding appropriate weightings for each objective term in an OCP’s cost function is challenging
[27]. In a concern for objectivity in the choice of the weightings of the penalty terms, we chose to
vary them (Tab. 2) and analyzed their effect on the optimal solutions (Appendix 6.3). The solutions
resulting from a larger penalty weight tended to have a higher cost. This could be explained by
the other objective terms becoming too small compared to the penalty term. Consequently, the
solutions of the first optimization step would be drawn farther from an optimum by the largely
weighted penalty term. At the same time, the maximum iteration number was also varied. We
expected that a few iterations in the right direction during the first optimization step would be
sufficient to generate a good initial guess since the purpose of this step was only to improve the
starting point without any feasibility guarantee. However, this hypothesis was shown wrong; it
seems preferable to choose a higher maximal iteration number (> 1000) as it gave a better starting
point. Thus, supplementary iterations during the first optimization step were beneficial to find a
better starting point, which reduced the computational time of the second optimization step and
led to solutions that are more optimal. Consequently, we recommend using a maximal iteration
number greater than 1000 and a penalty weight between 1000 and 100000 depending on the order
of magnitude of the penalty.

4.5 Limits and perspectives
Two main limitations are worth noticing. i) The workflow was applied to a simple OCP regarding
the multibody system dynamics. While the generalization to other OCPs is not possible. Yet, there
is no reason to think that this problem is a particular case. Further studies with more complex
OCPs are needed to demonstrate the advantages of the proposed workflow over random initializa-



tion. ii) The process being time-consuming, a limited number of parameter combinations (penalty
weight and maximum iteration number) were tested. Hence, it is not possible to provide the best
parameters to optimize this OCP.

5 CONCLUSION
We developed a two-step optimization workflow in which the first optimization is solved by ex-
pressing constraints as penalties included in the cost function. The fully constrained OCP is then
solved using the solution from the underconstrained OCP as the initial guess. Applying this two-
step optimization algorithm to a trajectory optimization problem solved with an interior point
method, we found more optimal solutions, more often and more rapidly. Consequently, researchers
using constrained optimal control to search for innovative trajectories could reduce manual fine-
tuning, spear computational time, and get more global solutions using or adapting the workflow
proposed in this study.
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6 Appendix
6.1 Interior point constraints
The problem illustrated in Fig. 6 was solved with an IPM. It exemplifies its failure to find the
global minimum because of the constraints’ configuration. At the beginning (xinit), the constraints
are not active since the yellow point is not neighboring a constraint. Then, the point would slide
linearly in the gradient’s direction (white line) until a bound is hit. The point would then slide on
the constraint until the cost function is minimized along the constraint frontier. At this point, the
IPM exits (x f ound , magenta point). The solution found is better than the initial guess; however, if
it had been possible to jump over the constraints, a better solution would have been found (xopt ,
purple points).

Figure 6: Illustration of the path followed by the IPM to find a locally optimal solution. The
feasible variable domain is constrained by the black line, and the colored surface lines illustrate
the gradient of the cost function. The optimization is initialized at the yellow point (xinit), then
follows the white line to reach a locally optimal solution on the magenta point (x f ound). More
optimal solutions existed at purple points (xopt).



6.2 Kinematics of the recommended solutions
Fig. 7 presents the kinematics used in the four clusters of recommended solutions.

Figure 7: The pendulum’s kinematics for the four clusters of recommended solutions. The cost
associated with each cluster is presented in the legend.



6.3 Impact of the penalty weight and maximal number of iterations on the optimal solutions
During the first optimization step, the weight of the penalty term and the maximal number of
iterations were varied. Fig. 8 and Fig. 9 present the effect of these parameters on the solutions that
converged for the penalized continuity and penalized obstacles implementations, respectively.

Figure 8: Cost (x-axis), computational time (y-axis) of the two-step optimization workflow, and
maximum spheres’ penetration (color gradient) for the penalized continuity implementation. Opti-
mal solutions are separated according to the maximum number of iterations and the weight associ-
ated with the continuity penalty during the first optimization step. Mean and standard deviations
are presented with error bars. The convergence rate of each case is presented in the top right corner
of the figures. The dashed vertical lines indicate the threshold for solutions considered as recom-
mended. Only solutions that reached convergence are presented.



Figure 9: Cost (x-axis), computational time (y-axis) of the two-step optimization workflow, and
maximum spheres’ penetration (color gradient) for the penalized obstacles implementation. Opti-
mal solutions are separated according to the maximum number of iterations and the weight associ-
ated with the continuity penalty during the first optimization step. Mean and standard deviations
are presented with error bars. The convergence rate of each case is presented in the top right corner
of the figures. Only solutions that reached convergence are presented.



6.4 Computational time per iteration
The median computational time was 93.65 s, 148.94 s, and 30.79 s for the constrained, penalized
continuity and penalized obstacles implementations, respectively . The median computational
time per iteration is similar for each implementation (constrained=0.0949 s, penalized continu-
ity=0.0973 s, and penalized obstacles=0.0961 s). However, the number of iterations to conver-
gence varied across implementations ( constrained=1216.9, second optimization step of penal-
ized continuity=1100.7 and second optimization step of penalized obstacles=236.5). It can be
concluded that the shorter computational time for the penalized obstacles implementation comes
from the reduced number of iterations needed to reach convergence (Fig. 10 b.). Thus, on average,
the first optimization step of the penalized obstacles implementation found initial guesses that
were closer to an optimal solution than the penalized continuity.

Figure 10: a. Computational time per iteration b. Number of iterations. Median values are pre-
sented with horizontal lines. Only the solutions that reached convergence after the second opti-
mization step are presented.



6.5 Penetrating: a poorly efficient strategy
Most of the solutions showing sphere penetration had a high cost. Fig. 11 presents an example
of a penetrating solution (animation video in supplementary material). This strategy had a high
cost because it required a long movement duration and large forces applied to the cart. The time
interval between two shooting nodes was 0.019 s, and the integral of the horizontal force applied
on the cart was 17.39 Ns compared to 0.002 s and 4.04 Ns for the best recommended solution. The
point on the pendulum penetrated the sphere S3 and S4 between shooting nodes 495, 496, and 497.

Figure 11: A less efficient solution where the pendulum penetrates through the spherical obstacles
between the shooting nodes. Relevant shooting nodes are numbered for reference.


