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ABSTRACT
In this paper we develop bond-graph descriptions for ideal mechanical constraints,
both embedded and adjoined, by stating and applying the principle of virtual power,
at the particle level, to both types of constraints. The resulting system-level bond
graph provides a bond-graphic derivation of Kane’s equations for a general nonlinear
nonholonomic system. Keywords: bond graph, virtual power, Kane’s equations, ideal
constraints, ideal machine.

1 Introduction
In a recent conference paper [1], the authors reported (but did not prove) that for a general system
of constrained particles, having possible velocities represented by a partial velocity matrix, the
partial velocity matrix is the modulus of a multibond graph [2] modulated transformer element,
which represents the subsystem of embedded constraints described by the partial velocity matrix,
in the sense that the effort outputs of the transformer element are the particle-level constraint forces
for the embedded constraints. Although it is not the primary contribution of the paper, this fact is
previously unreported in the literature.
In this paper we provide a proof of the above-described fact, using the principle of virtual power,
which we state in a form well adapted to the system representation. We further extend the result by
deriving, from the same principle, the bond-graph representation of an additional set of adjoined
constraints, which could be in general rheonomic, nonholonomic, and nonlinear in velocity [3].
This result is also unreported in the literature.
By combining the so-derived subsystem bond graphs with an additional multibond subsystem,
representing the particle kinetic energies, we develop a complete system-level bond graph (see
Fig. 3), from which Kane’s equations for the system are derived. Such a bond-graphic derivation
of Kane’s equations, for a general particle system incorporating both embedded constraints and
adjoined nonlinear nonholonomic constraints, has not been previously reported in the literature.

2 System Description
We consider a complex1 nonholonomic dynamical system in an inertial frame. In this frame, each
system particle 𝑃 has a position vector 𝒓𝑃, determined by 𝑅 generalized coordinates 𝑞𝑟 ; let q
denote the column matrix of 𝑅 generalized coordinates. Particle 𝑃 also has a velocity vector 𝒗𝑃,
which is determined by q, together with 𝑆 ≤ 𝑅 generalized velocities2 𝑓𝑠; let f denote the column
matrix of 𝑆 generalized velocities. The number of embedded velocity constraints, which could be
either holonomic3 or linear nonholonomic, is

𝑅ec = 𝑅 − 𝑆 . (1)

1I.e., subject to nonlinear velocity constraints.
2We use terminology from [4] where feasible; these are often called quasi-velocities in the literature.
3E.g. kinematic loop closure constraints.



For compatibility with bond-graph representation, we assume that all rheonomic constraints are
adjoined explicitly, rather than embedded in the functional dependence of 𝒗𝑃 on q and f; see
Sec. 6.3. With this assumption, f determines the velocity vectors 𝒗𝑃 according to

𝒗𝑃 =

(
∂𝒗𝑃

∂fT

)
f , (2)

and the generalized coordinate derivatives ¤q according to

¤q = Qf , (3)

where Q is an 𝑅 × 𝑆 matrix of rank 𝑆, and ∂𝒗𝑃/∂f is a column matrix of 𝑆 nonholonomic partial
velocity vectors, both of which depend only on q. All constraints that are both scleronomic and
either holonomic or simple (linear in velocity) nonholonomic are accounted for via constraint
embedding with q and f.
There remain also 𝐿 explicitly adjoined velocity constraints 𝐶ℓ , where 𝐶ℓ must be either rheo-
nomic, nonlinear nonholonomic, or both. Without loss of generality, we assume there are 𝑁

particles 𝑃𝑛 in the system; with this assumption we may write 𝐶ℓ as4

𝐶ℓ : 𝜙ℓ ({𝒗𝑛}, q) = 𝜙
p

ℓ
(𝑡) , (4)

where 𝒗𝑛 is shorthand notation for 𝒗𝑃𝑛 , {𝒗𝑛} is a column matrix of 𝑁 particle velocity vectors,
𝜙ℓ is a function of {𝒗𝑛} and q, and 𝜙

p
ℓ
is a prescribed function of time 𝑡 for adjoined rheonomic

constraints, or zero for adjoined scleronomic constraints. On the assumption that the adjoined con-
straints are consistent and independent, the final constrained system has 𝑆 − 𝐿 degrees of freedom.
Each particle 𝑃𝑛 is then subject to a total force resultant

𝑹𝑛 = 𝑭𝑛 + 𝑭ec 𝑛 +
∑︁
ℓ

𝑭ac 𝑛ℓ , (5)

composed of the impressed force 𝑭𝑛, the constraint force 𝑭ec 𝑛, due to all embedded constraints,
and the sum of the constraint forces 𝑭ac

𝑛ℓ
, each due to the corresponding adjoined velocity con-

straint 𝐶ℓ .

3 Virtual Velocities and the Principle of Virtual Power
A virtual generalized velocity 𝛿1 𝑓𝑠 is a hypothetical small (infinitesimal) change in the value of
𝑓𝑠, while holding 𝑡 and q constant [5]. Considering 𝛿1f to be a length 𝑆 column matrix of these
changes, the resulting change in the value of 𝒗𝑛 is, from (2), the virtual particle velocity vector

𝛿1𝒗𝑛 =

(
∂𝒗𝑛

∂fT

)
𝛿1f ; (6)

𝛿1𝒗𝑛, determined in this way from an arbitrary value of 𝛿1f, will always satisfy all embedded
constraints, by construction. Similarly, considering {𝛿1𝒗𝑛} to be a column matrix of 𝑁 virtual
velocity vectors, the virtual constraint velocity 𝛿1𝜙ℓ is defined as

𝛿1𝜙ℓ =

(
∂𝜙ℓ

∂{𝒗𝑛}T

)
· {𝛿1𝒗𝑛} , (7)

where ∂𝜙ℓ/∂{𝒗𝑛} is a column matrix of 𝑁 basis-independent vector gradients ∂𝜙ℓ/∂𝒗𝑛. Because
𝜙
p

ℓ
(𝑡) is independent of 𝒗𝑛, Eq. (4) requires that virtual velocities 𝛿1𝒗𝑛 consistent with the adjoined

constraint 𝐶ℓ satisfy

𝛿1𝜙ℓ =

(
∂𝜙ℓ

∂{𝒗𝑛}T

)
· {𝛿1𝒗𝑛} = 0 . (8)

A statement of the principle of virtual power which is well adapted to this classification of ideal
constraints is as follows:

4This representation is adapted from [3].



Considering the virtual particle velocities 𝛿1𝒗𝑛 as defined above, the total virtual
power of all virtual particle velocities consistent with all the embedded ideal con-
straints is zero, and the total virtual power of all virtual particle velocities consistent
with each adjoined ideal constraint is zero.

Applying the principle first to the embedded constraints, the total virtual power of all embedded
constraints is computed as

𝛿1 𝑃ec = {𝛿1𝒗𝑛}T
· { 𝑭ec 𝑛} ; (9)

and according to the principle as stated, this must be zero for all virtual velocities 𝛿1𝒗𝑛 consistent
with the embedded constraints. Using Eq. (6) for these virtual velocities, we find

0 = 𝛿1fT
(
∂{𝒗𝑛}T

∂f

)
· { 𝑭ec 𝑛} . (10)

Since 𝛿1f in (6) is arbitrary, we conclude

0 =

(
∂{𝒗𝑛}T

∂f

)
· { 𝑭ec 𝑛} ; (11)

this equation leads to the standard unreduced5 form of Kane’s equations, when there are no ad-
joined constraints (i.e. (24), with eac = 0).
Now considering the adjoined constraints, the total virtual power of constraint 𝐶ℓ , summed over
all particles 𝑃𝑛, is found as

𝛿1 𝑃ac ℓ = {𝛿1𝒗𝑛}T
· { 𝑭ac 𝑛ℓ} , (12)

and according to the principle of virtual power as stated above, this must be zero for all virtual
velocities 𝛿1𝒗𝑛 consistent with 𝐶ℓ . Making use of Eq. (8) for such virtual velocities, we find this
will be identically zero if each constraint force 𝑭ac

𝑛ℓ
is given by

𝑭ac 𝑛ℓ =

(
∂𝜙ℓ

∂𝒗𝑛

)
_ℓ , (13)

where _ℓ is a Lagrange multiplier required for dimensional consistency; i.e., the product of 𝜙ℓ and
_ℓ must have dimensions of power. The total constraint force for all adjoined constraints acting on
𝑃𝑛 is then

𝑭ac 𝑛 =
∑︁
ℓ

𝑭ac 𝑛ℓ =

(
∂𝛟T

∂𝒗𝑛

)
𝛌 , (14)

where 𝛌 is a column matrix of 𝐿 Lagrange multipliers, and 𝛟 is a column matrix of 𝐿 functions 𝜙ℓ .

4 Constraint Power and Bond-Graph Interpretations
In this section we formulate the constraint power for both embedded and adjoined constraints, and
we find that, by means of a bond-graph representation, they each can be represented as separate
power-conserving subsystems, i.e. as ideal machines.
The total power of all embedded constraints is given by

𝑃ec = {𝒗𝑛}T
· { 𝑭ec 𝑛} ; (15)

using (2) for {𝒗𝑛}, we see that this can also be written as

𝑃ec = fT
(
∂{𝒗𝑛}T

∂f

)
· { 𝑭ec 𝑛} ,

5By ‘unreduced’ is meant: not yet reduced to an explicit system of ordinary differential equations.
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Figure 1. Bond-graph representation of embedded constraints
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Figure 2. Bond-graph representation of adjoined constraints

or
𝑃ec = fT eec , (16)

where eec is a column matrix of 𝑆 generalized constraint forces given by

eec =

(
∂{𝒗𝑛}T

∂f

)
· { 𝑭ec 𝑛} . (17)

From (11) we also know that eec = 0. Equations (2), (15)–(17) have the bond-graph representation
illustrated in Fig. 1, where we see two 1-junctions (common flow, effort-summing), representing
the flow matrices f and {𝒗𝑛} respectively, connected by a power-conserving multibond modulated
TF element, which may considered to be an ideal machine. The modulus of the TF element is
given by the 𝑁 × 𝑆 matrix of partial velocity vectors, i.e. ∂{𝒗𝑛}/∂fT, which is a function of the
generalized coordinates q.
The total power of all adjoined constraints is given by

𝑃ac = {𝒗𝑛}T
· { 𝑭ac 𝑛} ; (18)

using (14) for 𝑭ac 𝑛, we see that this can also be written as

𝑃ac = {𝒗𝑛}T
·

(
∂𝛟T

∂{𝒗𝑛}

)
𝛌 ,

or
𝑃ac = fac T 𝛌 , (19)

where fac is a length 𝐿 column matrix of generalized constraint velocities, given by

fac =

(
∂𝛟

∂{𝒗𝑛}T

)
· {𝒗𝑛} . (20)

Equations (14), (18)–(20) have the bond-graph representation illustrated in Fig. 2, where again we
see a power-conserving multibond modulated TF element; but it is now actively driven by an effort
source Se, varying 𝛌 with time to satisfy the adjoined constraints, and thereby supplying power to
the system. This too may be considered to be an ideal machine. The modulus of the TF element
is given by the 𝐿 × 𝑁 matrix of function gradients ∂𝛟/∂{𝒗𝑛}T, which in the case of nonlinear
nonholonomic constraints, may be a function of f, as well as of q. The TF element connects
1-junctions representing {𝒗𝑛} and fac respectively, and there is a third 1-junction, necessary to
maintain the proper sign convention on the constraint efforts { 𝑭ac 𝑛}.
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Figure 3. Bond-graph representation of full system

5 System-level Bond Graph and Equations of Motion
In this section we show how to assemble the constraint subsystem bond graphs developed above
with the remaining components required to build a full system-level bond graph, leading to a
derivation of Kane’s equations for the system.
Given the inertial mass 𝑚𝑛 for particle 𝑃𝑛, and the particle momentum vector defined as

𝒑𝑛 = 𝑚𝑛𝒗𝑛 , (21)

Newton’s second law provides a dynamic force balance on the particle, expressible as

𝑭𝑛 + 𝑭ec 𝑛 + 𝑭ac 𝑛 = ¤𝒑𝑛 . (22)

This is converted to a system-level power balance, by dot-multiplying both sides of the equation
by the particle velocity vector 𝒗𝑛, and summing over all particles:

{𝒗𝑛}T
· {𝑭𝑛 + 𝑭ec 𝑛 + 𝑭ac 𝑛} = {𝒗𝑛}T

· { ¤𝒑𝑛} ; (23)

here we see the total rate at which work is being performed on the system on the left, and the total
rate at which kinetic energy is increasing on the right. Equations (21)–(23) are represented by
the kinetic energy subsystem on the right side of Fig. 3, which is combined with the constraint
subsystems previously introduced in Figs. 1–2, as well as an MTF element with matrix modulus
Q, representing the velocity transformation from f to ¤q (Eq. (3)), to form a complete system-level
multibond graph.
Fig. 3 allows a bond-graphic derivation of Kane’s equations for the system, in unreduced form.
Note that the kinetic energy subsystem is in full differential causality [6], with its inputs being the
individual particle velocities 𝒗𝑛, while its outputs are the individual particle inertial forces − ¤𝒑𝑛.
The equations are found by propagating the system effort inputs {𝑭𝑛}, 𝛌, and { ¤𝒑𝑛} separately
through the system, using the effort transformations indicated by the constitutive equations of the
modulated TF elements, to the left side of the f 1-junction, and summing the resulting generalized
force terms there. The effort balance at the 1-junction is then

e + e∗ + eac = 0 , (24)

where
e =

(
∂{𝒗𝑛}T

∂f

)
· {𝑭𝑛} (25)



represents a column matrix of generalized impressed forces,

e∗ =
(
∂{𝒗𝑛}T

∂f

)
· {− ¤𝒑𝑛} (26)

represents a column matrix of generalized inertia forces, and

eac =

(
∂{𝒗𝑛}T

∂f

)
·

(
∂{𝜙ℓ}T

∂{𝒗𝑛}

)
𝛌 (27)

represents a column matrix of generalized adjoined constraint forces, all of length 𝑆. This balance
of generalized forces can be straightforwardly reduced to a set of 𝑆 ordinary differential equations
for f, along with a set of 𝐿 algebraic equations for 𝛌; the details however are beyond the intended
scope of this paper.

6 Discussion
6.1 Generalizations
The development above can be generalized to a system composed of point masses, rigid bodies,
and flexible bodies, by considering each rigid or flexible body to consist of a large but finite num-
ber of particles. For a rigid body, the particle impressed forces will sum to a total impressed force
through a reference point [3, Sec 2.4], and a total moment about the reference point, the reference
point being fixed in the body frame, usually at the center of mass. In such a development, the
vector velocities for all points in a rigid body, in any adjoined velocity constraint involving that
body, will be replaced by two velocity vectors per rigid body: the angular velocity vector of the
body, and the linear velocity vector of the associated reference point, both in the inertial refer-
ence frame. An adjoined velocity constraint involving a flexible body may need to incorporate
additional generalized velocities representing elastic degrees of freedom associated with the body.

6.2 Nonlinear nonholonomic constraints
A nonlinear nonholonomic constraint generally reflects an actively imposed system control ob-
jective; it cannot be created or imposed by purely mechanical means [7, 8]. The energy cost of
imposing such a constraint is then of great interest. This cost is found by integrating the product of
the associated Lagrange multiplier and the associated generalized constraint velocity, over a time
period of interest.
Any nonlinear nonholonomic constraint could be embedded in the system description at the ac-
celeration level, rather than adjoined at the velocity level [3]. This would eliminate the associated
generalized force (Lagrange multiplier) from the formulation. As we have seen however, the La-
grange multiplier is actually necessary in order to compute the power required by the system to
enforce the constraint; nonlinear nonholonomic constraints are therefore adjoined to, rather than
embedded in, the initial system description.

6.3 Rheonomic constraints
Conventional developments of analytical dynamics allow rheonomic constraints to be embedded
in the system description, thereby eliminating explicitly time-dependent generalized coordinates
from the system description, and specifying that the particle positions are direct functions of time
as well as of the set of remaining independent generalized coordinates. See e.g. [9, Sec. 2.9].
While logically self-consistent, such an approach is fundamentally incompatible with the bond-
graph methodology, because it makes it impossible to identify on a bond graph the physical origins
of power delivered to the system by the rheonomic constraints, which is changes in the time-
dependent generalized coordinates.
Our approach here, which is not less general, is to adjoin all rheonomic constraints via Lagrange
multipliers, after the system has been completely described in terms of a full set of generalized



coordinates, including those that will become time-dependent when the rheonomic constraints are
enforced. This allows the physical source of power delivered by a rheonomic constraint to be
identified, enabling a calculation of the energy cost of the constraint over a given time interval. An
alternative to adjoining rheonomic constraints with Lagrange multipliers is to employ constraint-
adapted generalized velocities in the f matrix, together with the method of constraint relaxation
[1, 10]. The constraint reactions, formerly supplied by the Lagrange multipliers, then become
available at the end of the analysis, when the constraints are enforced.

6.4 Advantages of bond graph representations
Bond graphs, being based on Heaviside’s principle of the continuity of power flow in space6 [11],
provide a power-port based network description of multiphysics systems, using a small number of
ideal elements, thus revealing the topology of system power flows. This paper uses the multibond-
graph dialect [2], with an extension to allow basis-free vectors as power-conjugate efforts and flows
on multibonds [12]. By representing a constrained mechanical system at a high level of abstrac-
tion, the bond graph provides a system description that aggregates subsystems by phenomenology,
rather than strictly by physical location, providing a high-level overview of system power flows.
A unique contribution of the bond-graph methodology in this paper is the representation of the
particle-level constraint efforts and flows, for all embedded constraints and each adjoined con-
straint, as modulated multibond transformer elements, i.e. as ideal machines. The correspon-
dence between ideal constraints and ideal machines has been recognized from antiquity, e.g. as
in Archimedes’s ‘law of the lever’, but the bond-graph representation used here makes this corre-
spondence both formal and rigorous, via the principle of virtual power.
An interesting conclusion that may be drawn from the resulting system-level bond graph in Fig. 3 is
that the particle-level constraint forces 𝑭ec 𝑛 and 𝑭ac 𝑛 are indeed internal forces from the perspec-
tive of the topology of system power flow; this parallels the often noted but less general observation
that the (geometrically) internal forces in a rigid body are forces of constraint. A related observa-
tion is that Newton’s third law never needs to be invoked in order to create a bond-graph model
of a mechanical system; the more general principle of continuity of power flow being sufficient to
replace it.

6.5 Advantages of the principle of virtual power
The variational principles of mechanics can generally be categorized as zeroth order (virtual work,
least action), first order (virtual power), or second order (least constraint). Since the zeroth order
principles are not powerful enough to provide a solution for systems with nonlinear nonholonomic
constraints [13], it then develops that the principle of virtual power is the variational principle
of minimum order that provides a solution for systems with nonlinear nonholonomic constraints,
while also providing solutions for systems with constraints that could be solved via a zeroth order
principle. It can be applied without difficulty to problems of statics, replacing the principle of
virtual work for this purpose. Indeed, its use in the field of continuum mechanics has been steadily
growing, supporting e.g. the development of theories of microstructured media [14]. As this paper
demonstrates, it is also highly compatible with mechanical system bond-graph representations.

6.6 Kane’s equations
Although originally developed without reference to any variational principle [15, 16, 9], it has been
recognized for some time that Kane’s equations are readily derived from the principle of virtual
power [17, 5]. This paper strengthens that conclusion by providing a particle-level bond-graphic
derivation of Kane’s equations for a complex nonholonomic system, the underlying bond graph
having been developed by application of the virtual power principle separately to embedded and
adjoined constraint subsystems.

6"When energy goes from place to place it traverses the intermediate space."



Karnopp in 1992 concluded that the pairing of a high-level bond-graph representation with a pow-
erful equation-based methodology, such as Lagrange’s or Hamilton’s equations, provides an ef-
fective solution to the problem of differential causality in bond-graph models of constrained me-
chanical systems [6]. These methodologies are, however, limited to holonomic systems. Kane’s
equations, as illustrated above, provide a more comprehensive alternative methodology, which can
handle embedded nonholonomic constraints, via the use of generalized velocities (quasi-velocities)
as flow variables. The bond-graphic derivation of Kane’s equations shown above proceeds by
representing all system particles with differential causality, which solves Karnopp’s problem of
differential causality by embracing it.
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